
SoK: Fully Homomorphic Encryption Compilers
Alexander Viand

ETH Zurich
alexander.viand@inf.ethz.ch

Patrick Jattke
ETH Zurich

pjattke@ethz.ch

Anwar Hithnawi
ETH Zurich

anwar.hithnawi@inf.ethz.ch

Abstract—Fully Homomorphic Encryption (FHE) allows a
third party to perform arbitrary computations on encrypted
data, learning neither the inputs nor the computation results.
Hence, it provides resilience in situations where computations are
carried out by an untrusted or potentially compromised party.
This powerful concept was first conceived by Rivest et al. in
the 1970s. However, it remained unrealized until Craig Gentry
presented the first feasible FHE scheme in 2009.

The advent of the massive collection of sensitive data in cloud
services, coupled with a plague of data breaches, moved highly
regulated businesses to increasingly demand confidential and
secure computing solutions. This demand, in turn, has led to a
recent surge in the development of FHE tools. To understand
the landscape of recent FHE tool developments, we conduct
an extensive survey and experimental evaluation to explore the
current state of the art and identify areas for future development.

In this paper, we survey, evaluate, and systematize FHE tools
and compilers. We perform experiments to evaluate these tools’
performance and usability aspects on a variety of applications.
We conclude with recommendations for developers intending
to develop FHE-based applications and a discussion on future
directions for FHE tools development.

I. INTRODUCTION

Recent years have seen unprecedented growth in the adop-
tion of cloud computing services. More and more highly reg-
ulated businesses and organizations (e.g., banks, governments,
insurances, health), where data security is paramount, move
their data and services to the cloud. This trend has led to
a surge in demand for secure and confidential computing
solutions that protect data confidentiality while in transit, rest,
and in-use. This is an amply justified and expected demand,
particularly in the light of the numerous reports of data
breaches [1], [2]. Fully Homomorphic Encryption (FHE) is
a key technological enabler for secure computation and has
recently matured to be practical for real-world use [3]–[9].

FHE allows arbitrary computations to be performed over
encrypted data, eliminating the need to decrypt the data and
expose it to potential risk while in use. While first proposed
in the 1970s [10], FHE was long considered impossible or
impractical. However, thanks to advances in the underlying
theory, general hardware improvements, and more efficient
implementations, it has become increasingly practical. In
2009, breakthrough work from Craig Gentry proposed the
first feasible FHE scheme [11]. In the last decade, FHE has
gone from a theoretical concept to reality, with performance
improving by up to five orders of magnitude. For example,
times for a multiplication between ciphertexts dropped from 30
minutes to less than 20 milliseconds. While this is still around

seven orders of magnitude slower than an IMUL instruction
on a modern CPU, it is sufficient to make many applications
practical. Additionally, modern schemes introduced SIMD-
style parallelism, encoding thousands of plaintext values into
a single ciphertext to further improve throughput [12].

These advances have enabled a wide range of applications
covering a wide range of domains. These include mobile
applications, where FHE has been used to encrypt the back
end of a privacy-preserving fitness app [13], while continuing
to provide a real-time experience. In the medical domain,
FHE has been used to enable privacy-preserving genome
analysis [14] applications over large datasets. More generally,
FHE has been used to solve various well-known problems
like Private Set Intersection (PSI) [15], outperforming previous
solutions by 2× in running time. In the domain of machine
learning, FHE has been used for tasks ranging from linear and
logistic regression [16] to Encrypted Neural Network infer-
ence [17], which can be used to run privacy-preserving ML-as-
a-Service applications, for example, for private phishing email
detection [18]. As a consequence, there has been increasing
interest in FHE-based secure computation solutions [3]–[9].
Gartner projects [19] that “by 2025, at least 20% of companies
will have a budget for projects that include fully homomorphic
encryption.”

Despite these recent breakthroughs, building secure and
efficient FHE-based applications remains a challenging task.
This is largely attributed to the differences between traditional
programming paradigms and FHE’s computation model, which
poses unique challenges. For example, virtually all standard
programming paradigms rely on data-dependent branching,
e.g., if/else statements and loops. On the other hand, FHE
computations are, by definition, data-independent, or they
would violate the privacy guarantees. Working with FHE
also introduces significant engineering challenges in practice.
Different schemes offer varying performance tradeoffs, and
optimal choices are heavily application-dependent. To address
some of the engineering challenges in this space, we have seen
a surge of work on tools that aim to improve accessibility and
reduce barriers to entry in this field.

Without tool support, realizing FHE-based computations by
implementing the required mathematical operations directly or
using an arbitrary-precision arithmetic library is complex, re-
quiring considerable expertise in both cryptography and high-
performance numerical computation. Therefore, FHE libraries
like the Simple Encrypted Arithmetic Library (SEAL) [20]
or the Fast Fully Homomorphic Encryption Library over the

1092

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Alexander Viand. Under license to IEEE.
DOI 10.1109/SP40001.2021.00068

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
68

FHE
Compilers

ALCHEMY Cingulata
Marble RAMPARTSE3

FHE
Libraries

Maths &
Other Libs.

EVA

PALISADE
SEALHElib

TFHE

Λ ￮ λ
FLINT GMP MPFR

MPIR …NTL
ABC

Boost FFTW
OpenMP

use

CHET
nGraph-HE SEALion

FHEW HEAAN

use

concrete
FV-NFLib

lattigo
cuFHE nuFHE

NFLib

Figure 1: Overview of the FHE tool space.

Torus (TFHE) [21] implement the underlying cryptographic
operations and expose a higher-level API. In addition to key
generation, encryption, and decryption, these APIs also expose
at least homomorphic addition and multiplication.

In practice, however, library APIs often include dozens
of additional functionalities for ciphertext maintenance and
manipulation. Since schemes vary in features, these APIs
differ significantly not just in their implementation but also
conceptually. Efforts are being made to standardize APIs
for FHE schemes [22] and, simultaneously, there are first
steps towards interoperability via wrappers around existing
libraries [23]. However, achieving competitive performance
frequently still requires working with libraries directly.

While FHE libraries make the process of writing FHE-based
applications substantially more efficient, they still require sig-
nificant expertise and understanding of the underlying scheme
since they remain relatively low-level cryptographic libraries.
Therefore, recent years have seen the development of higher-
level tools, frequently known as FHE compilers, that aim to
translate standard programs into FHE-based implementations.
These tools focus on making FHE accessible to non-experts
by improving usability and increasingly offering advanced
optimizations previously accessible only to experts. Compilers
generally rely on FHE libraries to realize the actual en-
/decryption and homomorphic computation. FHE libraries, in
turn, frequently employ existing libraries for fast numerical
computations, parallelization, or other non-FHE-specific fea-
tures. Figure 1 depicts different FHE tools and where they fit
into this dependency hierarchy.

While much work remains to be done, these tools have
significantly eased the task of developing FHE applications.
For example, in the domain of machine learning, tools have
demonstrated accessibility and usability while also providing
state-of-the-art performance due to automatic optimizations
that significantly outperform previous hand-crafted solutions
by experts. The nGraph-HE framework [24], for example,
converts neural networks into efficient FHE-based implemen-
tations for private inference. Here, nearly all aspects related to
FHE are abstracted away, and the user experience is essentially
identical to working directly with TensorFlow.

Though there has been a surge of works on FHE tools and
accessibility, we currently lack a comprehensive overview of
the current state of FHE development. While it is clear that
both significant advances have been made and many chal-
lenges remain open, there is no systematic understanding of
the remaining engineering challenges that need to be addressed
to help broaden FHE adoption.

Therefore, this paper aims to fill in this knowledge gap
by studying and surveying the current state-of-the-art of FHE
tools. More concretely, this survey has two objectives: First, to
assist developers looking to develop FHE-based applications
in selecting a suitable approach and, second, to provide the
community with valuable insights on both successes and
remaining issues in this space.

Towards this goal, we conduct an extensive survey of
existing tools and highlight their features and characteristics.
Subsequently, we consider these tools in practice by experi-
mentally evaluating them across a range of case study applica-
tions, contrasting usability, expressiveness, and performance.

In our experimental evaluation, we consider a selection
of tools in more detail and provide an in-depth analysis of
their usability and expressiveness in practice. We implement
and benchmark three case-study applications that represent
different domains of FHE-based computation. Our benchmarks
allow us to study not only the overall performance of FHE for
these applications across tools but also the relative strengths
of different tools compared to each other.

Along with this paper, we provide an online repository1

that includes Docker images for all the tools we evaluate,
our automated benchmarking framework, and the example
applications. Additionally, it includes further benchmarks and
tool descriptions that we could not include in this paper due
to space limitations.

We conclude our paper with a discussion of the current state
of FHE and FHE tools. We discuss applications for which FHE
is likely practical today and show gaps between state-of-the-art
results and what non-expert users can realistically implement.
Based on the insights gained through our study, we highlight
successes in the FHE tool space and identify gaps that remain
to be addressed. Finally, we discuss a possible road map for
the next generation of FHE tools.

A. Related Work

This work is, to the best of our knowledge, the first to
survey and study the space of FHE compilers. While previous
work has considered FHE libraries [25], they did so by
contrasting different FHE schemes and their implementations
and considered only a small subset of the tools we consider.
This paper is similar in nature to an SoK by Hastings et
al. [26], which analyzed tools in the MPC domain. Practical
MPC constructions have been an active research area since
the 1980s. As a consequence, these tools are more mature
and more integrated into the research process. In their work,
Hastings et al. focus on the usability aspects of MPC tools
and did not consider performance. In contrast, we focus on
analyzing the expressiveness and performance of the existing
FHE tools and provide recommendations to developers in
choosing the correct tool for their target application.

1https://github.com/MarbleHE/SoK

1093

II. FULLY HOMOMORPHIC ENCRYPTION

A homomorphic encryption scheme is an encryption scheme
where there exists a homomorphism between operations on the
plaintext and operations on the ciphertext. For example, the
Paillier encryption scheme [27] is additively homomorphic:
the product of two ciphertexts decrypts to the sum of their
plaintexts. Meanwhile, textbook RSA [28] is multiplicatively
homomorphic: the product of two ciphertexts decrypts to the
product of their plaintexts. While such partially homomor-
phic schemes have existed since the 1970s, fully homomor-
phic encryption schemes, i.e., schemes that are homomorphic
regarding both addition and multiplication, were an open
problem until recently. While first proposed shortly after the
introduction of public-key cryptography in the 1970s [10],
proposed solutions could support only limited combinations of
operations (e.g., additions plus a single multiplication [29]).
Here, we provide a brief overview over the development of
modern FHE schemes, deferring more in-depth descriptions
of selected FHE schemes to the appendix (§A).
Foundations of practical FHE. Modern FHE schemes date
back to 2009 when Craig Gentry presented the first feasible
FHE construction [11]. While the original scheme had im-
practically large constant overheads, follow-up work improved
upon the scheme, enabling a first implementation [30].

All modern schemes follow the general approach laid out
by Gentry’s first scheme: In these schemes, public keys are
values that cancel out to zero when combined with the secret
key sk. Encryption multiplies the public key pk with a
random number a and adds the message m. For two ciphertexts
xi = pk ∗ ai + mi, addition and multiplication trivially
translate to the equivalent operations on the plaintexts, i.e.,
x0 ∗ x1 = m0 ∗ m1 + pk ∗ (a0 ∗ x1 + a1 ∗ m0) which
decrypts to m0 ∗ m1 when combined with the secret key.
However, for a secure system, noise must be added to public
keys and ciphertexts. As long as the noise e is sufficiently
small, m + e′ can be rounded to the correct value and
applying the secret key recovers m. During homomorphic
operations, the noise in the ciphertext grows. While this effect
is negligible during additions, multiplying two ciphertexts
introduces significantly more noise. This limits computations
to a (parameter-dependent) number of consecutive multipli-
cations (multiplicative depth) before decryption fails. This
limitation can be circumvented using bootstrapping, which
resets the noise level of a ciphertext to a fixed lower level
by homomorphically evaluating the decryption circuit with
an encrypted secret key as input. However, the decryption
circuit needs to be sufficiently low-depth to allow at least one
additional multiplication before needing to bootstrap again.
Second Generation Schemes. While the first generation of
FHE presented a significant academic breakthrough, it was too
inefficient (e.g., around 30 min needed to compute a single
homomorphic multiplication) to truly enable practical appli-
cations of FHE. In response, a second generation of schemes
like the Brakerski-Gentry-Vaikuntanathan (BGV) [31] and
Brakerski/Fan-Vercauteren (BFV) [32], [33] schemes evolved.

In order to overcome the performance penalties of bootstrap-
ping, they introduced the concept of leveled homomorphic
encryption. Here, the parameters are chosen sufficiently large
to evaluate the entire computation without bootstrapping.
While there is a cut-off point after which bootstrapping is
more efficient, this is unlikely to be reached by most programs.
In addition, they introduced support for Single Instruction,
Multiple Data (SIMD)-style batching. This exploits the fact
that the plaintext space is a ring of polynomials with many
coefficients. Using the Chinese Remainder Theorem [34], this
can be reinterpreted as many different independent slots and
many different messages (usually 213–216) can be packed
into a single ciphertext. Automorphisms additionally enable
homomorphically executable rotations between slots [35].

The Cheon-Kim-Kim-Song (CKKS) scheme [36] introduces
a further optimization, considering homomorphic encryption
for approximate numbers. While it follows a very similar
construction to BGV, it is formally speaking not an FHE
scheme since the result is only approximately the same as
the equivalent plaintext operation, which can introduce subtle
issues in practice. However, this relaxation has led to an
extremely efficient scheme. CKKS is designed primarily for
computations with fixed-point numbers, i.e., a number x is
represented as m = bx ∗ ∆e for scale ∆, usually a large
integer. CKKS introduces a homomorphic rounding operation
to reduce the scale homomorphically, avoiding overflow issues.
Third Generation Schemes. More recently, a third gen-
eration of FHE schemes, based on the Gentry-Sahai-Waters
(GSW) scheme [37], has emerged. These schemes mostly
abandon batching and leveled HE and instead focus on fast
bootstrapping. For example, implementations of the Chillotti-
Gama-Georgieva-Izabachene (CGGI2) scheme [38], [39] can
perform bootstrapping in less than 0.1 seconds, while boot-
strapping for BFV or BGV usually takes several minutes
even in efficient implementations. While initially limited to
binary settings, recent follow-up work [40] extends this to
arithmetic circuits. However, fast bootstrapping is incompati-
ble with batching, introducing a trade-off between latency and
throughput when compared to second-generation schemes.
FHE and MPC. Finally, we briefly consider FHE in the wider
context of secure Multi-Party Computation (MPC). While FHE
could be used to realize many 2-party MPC protocols, it
does not by default offer circuit privacy, i.e., does not hide
the function being computed. Where desired, this is usually
addressed in practice via noise flooding [11], i.e., adding large
noise to the final result before returning it to the client. FHE
can also be extended to multi-party or multi-key settings. In
multi-party FHE, different entities generate a public key and
shares of a secret key [41]. In multi-key FHE, each entity
independently generates their secret and public key [42]. There
are also hybrid schemes that combine FHE and MPC [43]
or different FHE schemes [44]. We only consider the two-
party FHE-only client-server setting, but many of the concepts
transfer directly to the other settings.

2The CGGI scheme is more commonly known as TFHE, however we refer
to it by the author initials in order to avoid confusion with the TFHE library.

1094

III. WHAT MAKES DEVELOPING FHE APPLICATIONS
CHALLENGING?

The intricacy of the underlying schemes still limits devel-
oping FHE-based applications predominantly to experts. Each
scheme presents a new set of configurations and performance
tradeoffs, and achieving state-of-the-art results requires a high
familiarity with the underlying schemes. In addition, FHE
imposes a fundamentally different programming paradigm, not
only because of the need for data-independent programs but
also because efficient solutions frequently require complex
vectorization approaches.

Throughout the last decade, a significant amount of folklore
knowledge around optimization methods and best practices
has been built up in the FHE community. However, these
techniques and insights are often scattered across the literature
or only referred to in passing. As a result, there is a vast gap
between state-of-the-art performance results and what non-
experts can achieve themselves.

In this section, we provide an overview of the key engi-
neering challenges that developers face today. The community
is starting to identify these accessibility issues as a major
roadblock to the broader adoption of FHE. Recent works are
trying to address these challenges by proposing higher-level
interfaces, better abstractions, and automated optimizations.
There will most likely always be specific applications that
impose additional challenges requiring expert input. However,
improved tools can benefit a variety of common application
patterns and help ease the path to FHE for many applications.

A. Parameter Selection

Selecting secure and efficient instantiations of the under-
lying cryptographic problems is hard for most encryption
schemes. In standard public-key cryptography, we circumvent
this by standardizing particular instantiations, e.g., selecting
certain elliptic curves, to avoid security issues arising when the
underlying hardness assumptions do not hold for poor choices.

FHE introduces the additional challenge of computation-
specific parameters. More complex computations require
larger plain- and ciphertext moduli to avoid overflow or noise
issues. However, as these parameters increase, the Learning
With Errors (LWE) problem that security is based on for most
schemes becomes easier, and the dimension of the problem
space (i.e., polynomial degree) must be increased to compen-
sate. As a result, we cannot standardize a single set of secure
parameter choices. Instead, the standardization effort [22] aims
to provide a conservative estimate of the security of different
combinations of moduli and dimensions. However, since this
does not address efficiency, parameter selection remains an
issue in developing FHE-based applications.

The time to evaluate homomorphic operations, for a given
polynomial degree n, is roughly proportional to the ciphertext
space modulus q, and a smaller q also gives higher security.
Therefore, we want to select the smallest q that still cor-
rectly decrypts the computation result. However, effectively
computing this minimal q remains an open challenge. While
formal analyses of the ciphertext noise growth exist for a

variety of schemes, these worse-case analyses are frequently
too conservative, giving parameters many times larger than the
experimentally determined optimum [45]. Also, the plaintext
space modulus t required to avoid overflows depends on the
size of the actual inputs, which likely come from a smaller
subset of Zt in practice. Here, again, worst-case analyses
lead to impractically conservative parameters. Instead, the
community’s accepted method is to incrementally decrease q
until the computation (on some representative input values)
fails to decrypt correctly, then choosing the previous q plus
some “safety margin” determined by experience.

B. Encoding

With encryption schemes like AES or protocols like TLS,
developers do not generally have to consider the plaintext
spaces of the underlying encryption schemes. As long as a
message can be serialized into a binary string, only padding
concerns arise. However, in FHE, the semantics of the plaintext
space determine the effect of the homomorphic computations.
These semantics, however, frequently do not match the in-
tended application semantics exactly. While this is already a
concern in traditional programming, with floating-point accu-
racy errors or integer overflows, FHE introduces a significantly
stronger deviation from the ‘ideal’ computation model.

For example, while we generally consider Zt as the mes-
sage space for most schemes, most support additional, more
complex spaces. For example, BGV supports Galois Fields
GF(2d) which can be used to efficiently realize AES-FHE
transciphering, i.e., converting a standard AES ciphertext to
an FHE ciphertext given an encryption of the AES key [46].

Conceptually, binary plaintext spaces (i.e., Z2) are the
easiest to work with since the semantics of homomorphic
computations directly correspond to binary circuits. However,
working directly with binary circuits is complicated as even
trivial functions like addition and multiplication of bit-wise
encoded integers require complex algorithms (e.g., Sklansky
or Kogge-Stone adders) to implement arithmetic operations
efficiently. Therefore, the conceptual ease-of-use is negated by
a significant engineering overhead for even simple algorithms.

While using advanced encoding schemes will most likely
remain predominantly an expert technique, existing FHE tools
have already shown that they can be employed automatically
to some extent. For example, nGraph-HE [24] also uses the
imaginary part of the CKKS message space when no ciphertext
multiplications are required, roughly doubling throughput.

C. Data-Independent Computation

Virtually all standard programming paradigms rely on
some form of data-dependent execution branching. Traditional
iterative programming relies heavily on if/else statements
and loops, and even functional programming requires data-
dependent branching to terminate recursion.

FHE computations, on the other hand, are by definition data-
independent, or they would violate the privacy guarantees.
Therefore, FHE computations are frequently conceptualized as
circuits, i.e., gates (or operations) connected by wires, where

1095

the execution follows the same steps, no matter what values the
input has. While it is possible to emulate, e.g., if/else branches
by calculating the result for both branches and performing a
multiplexing selection afterward, this requires evaluating both
branches. Simulating (bounded) dynamic-length loops could
be achieved by following a similar approach; however, this
quickly becomes infeasible in practice.

In addition, many schemes offer the best performance when
using integer plaintext spaces (t � 2). These arithmetic cir-
cuits are no longer Turing-complete and are instead limited to
computing polynomial functions. However, many applications,
including neural-network inference, can be approximated very
well. Therefore, a significant part of developing an FHE-based
solution is to consider first whether there exists a polynomial
approximation for the task to be performed. Sometimes, this
even requires completely switching the approach, e.g., stan-
dard algorithms for genomic sequence analysis are not suitable
for polynomial approximation, but alternative approaches exist
that can be expressed much more easily [47].

D. SIMD Batching

One of the major breakthroughs in achieving practical
performance in FHE-based solution was the introduction of
batching or packing in second-generation schemes, i.e., al-
lowing one to pack many different messages into a single
ciphertext. The resulting SIMD parallelism can trivially be
used to improve throughput by packing many different inputs
into a single computation run.

However, many FHE applications are limited in their practi-
cality by latency, i.e., non-amortized runtime. State-of-the-art
FHE-based solutions virtually always apply batching inside a
computation, even on a single instance of the input. Exploiting
SIMD batching to reduce latency requires novel programming
paradigms and algorithms that do not have equivalents outside
FHE. For example, matrix-vector-products can be expressed
more efficiently if we encode each of the matrix diagonals
into a SIMD vector [48], rather than row- or column-wise.

SIMD batching is, for those schemes that support it, po-
tentially the most important optimization technique, as the
large size of the vectors can lead to runtime improvements
of many orders of magnitude. However, it is also one of the
more complex techniques, requiring a deep understanding of
both the application and the performance-tradeoffs of the FHE
scheme in question. While some domains, such as machine
learning, are inherently heavily vectorized and can therefore
be automatically transformed into SIMD-friendly forms, this
remains an open problem for more general applications.

E. Ciphertext Maintenance

Different schemes use a variety of solutions to manage the
growth of the ciphertext noise during homomorphic compu-
tations. However, virtually all schemes feature some form of
ciphertext maintenance operations. These are operations like
relinearization, mod-switching/rescaling or bootstrapping that
must be called explicitly by the developer in order to manage
the noise growth optimally. For example, while one might

be tempted to apply relinearization immediately after each
multiplication, doing so is suboptimal. This is most obvious
for the last multiplication in a computation: with no further
multiplications following, the benefit of reducing future noise
growth is lost. Similar issues appear when considering when
to rescale in the CKKS scheme.

Bootstrapping is frequently not efficient when a leveled
approach can be used. However, there are some applications
for which it is the more suitable approach. In general, there is
a continuum of choices between the minimal parameters that
allow only a single operation before bootstrapping is needed
and the (potentially infeasibly large) parameters required to
execute the entire computation without bootstrapping.

One of the major advantages of the CGGI scheme is that it
inherently relies on bootstrapping to realize each operation.
Therefore, it removes the developer’s burden to consider
parameters and bootstrapping. However, it is worth noting that
a leveled version of the scheme is, in fact, faster for certain
applications, once again demonstrating a trade-off between
simplicity and performance.

While a variety of tools have included automatic ciphertext
maintenance [49]–[51], these were usually naive heuristics that
did not improve performance. Developing efficient strategies is
difficult because there are usually multiple degrees of freedom.
For example, for the rescaling operations in CKKS one needs
to consider both what scale to rescale to and where to insert
the operations. Recently, however, there have been increasing
efforts to automate this process [17].

IV. SURVEY METHODOLOGY

We split our analysis of the FHE tool space into two parts.
First, we present an extensive survey of existing tools and
highlight their features and characteristics. Second, we con-
sider these tools in practice by experimentally evaluating them
across a range of case study applications, contrasting usability,
expressiveness, and performance. We combine our quantitative
performance analysis with a qualitative assessment, describing
the challenges of developing applications in the different tools.

The secure computation ecosystem includes many different
types of tools. On the low-level side, there are math libraries
that simplify building implementations of FHE schemes, e.g.,
by efficiently implementing techniques useful for general
lattice cryptography. Then, there are FHE libraries that im-
plement specific schemes and offer slightly higher-level APIs,
e.g., keygen, encode, encrypt, add, mult. Finally, there
are compilers that abstract aspects like parameter selection,
encryption and decryption by offering a higher-level language
that developers can use to specify their computation.

In our survey, we consider FHE libraries and compilers.
While some of the underlying math libraries provide imple-
mentations of FHE schemes as examples [52], we consider
only tools that natively offer an API for FHE operations.
Throughout the last decade, there has been significant de-
velopment in schemes and implementations, with some being
discarded or replaced for security or efficiency reasons. We
only consider tools based on schemes that are currently still

1096

considered viable candidates (i.e., BFV, BGV, CKKS, or
GSW-based constructions) and consider only the latest version
of each tool, including “spiritual successors” where they exist.
We also consider only unique implementations, i.e., we do
not list wrappers or ports of existing tools. FHE techniques
are used internally in several MPC protocols, and there are
a variety of tools that specifically target hybrid protocols
combining FHE and MPC [43]. However, for this survey, we
consider only tools that support using purely FHE, requiring
no interaction during the computation itself.

We focus on three design aspects: (i) settings and con-
figurations, e.g., which input languages or schemes a tool
supports; (ii) features and optimizations, e.g., support for
batching or automated parameter selection; (iii) accessibility,
e.g., documentation and examples.

In our experimental evaluation, we consider a selection of
tools in more detail. Through using the tools to implement
different case study applications, we can provide an in-depth
analysis of their usability and expressiveness in practice. In
addition, our benchmarks allow us to study not only the
overall performance of FHE for these applications but also
the relative strengths of different tools compared to each other.
We select three applications that represent different domains of
FHE-based computation. Our first application is a risk score
calculation that requires comparisons and, therefore, binary
circuit emulation. Second, we consider a statistical χ2-test, in
a formulation that simplifies it to polynomial functions over
integers. Finally, we consider machine learning, specifically
neural network inference, for a range of network architectures.
We evaluate these applications across the different tools and
report on usability, expressiveness, and performance.

V. FHE LIBRARIES

FHE libraries implement the underlying cryptographic oper-
ations of an FHE scheme and expose a higher-level API. They
minimally provide key generation, encryption, decryption, ho-
momorphic addition, and multiplication interfaces. In practice,
however, library APIs often include dozens of additional
functionalities for ciphertext maintenance and manipulation.

Using these libraries generally requires a deep understand-
ing of the underlying scheme and its supported operations.
While many libraries include powerful advanced features that
can significantly improve performance, developers must em-
ploy them manually while ensuring correctness and efficiency.

In Table I, we present an overview of FHE libraries and
list supported languages, schemes, features, and accessibility
aspects. We group schemes into families of related schemes
for conciseness and consider support for bootstrapping and
leveled-FHE. For accessibility, we consider whether an im-
plementation (Code) is available, whether examples (Ex.)
describe usage () or usage can be inferred from, e.g., tests
(G#), and whether or not API documentation (Doc.) is available.
Finally, we give a rough indication of age and activity by
giving the date of the last release or major update.

Due to space constraints, we present only a small subset in
more detail. We start by discussing HElib, SEAL, and Palisade,

which appear to be the most active and widely supported
libraries. We also discuss TFHE here since it is used by some
of the compilers we evaluate. Finally, we discuss performance
differences and briefly discuss the remaining libraries.

A. HElib

The Homomorphic Encryption Library (HElib), presented in
2013 by Halevi and Shoup, was the first FHE library [48]. The
library is implemented in C++ and uses the NTL library [61]
for the underlying mathematical operations. While it initially
only implemented the BGV scheme, more recent releases of
this library also support the CKKS scheme. The library offers
leveled FHE operations and, for BFV, also supports bootstrap-
ping [62]. The source code is available under the Apache
License v2.0, and includes extensive examples. In addition
to the standard documentation, several reports describing the
design and algorithms of HElib [56], [62], [63] are available.

B. PALISADE

PALISADE, first released in 2014, is developed primarily
by NJIT and Duality Technologies [58]. It is implemented in
C++ and optionally uses the NTL library [61] to accelerate
underlying mathematical operations. PALISADE supports a
wide range of schemes, including BFV, BGV, CKKS, and
CGGI. In addition, it supports multi-party extensions of certain
schemes and other cryptographic primitives like proxy re-
encryption and digital signatures. The library offers both
leveled and bootstrapped operations, where supported by the
scheme. PALISADE’s source code is available under a BSD
2-clause license and includes examples and documentation.

C. SEAL

The Simple Encrypted Arithmetic Library (SEAL), first
released in 2015, is developed by Microsoft Research [20].
It is implemented in C++, with an official wrapper for .NET
languages (e.g., C#). SEAL is thread-safe and heavily multi-
threaded itself. It implements the BFV and CKKS schemes,
with a majority of the API being common to both. SEAL
offers leveled FHE operations and does not implement boot-
strapping for either scheme. Earlier versions of SEAL included
automated parameter selection based on estimating the noise
growth [64]. Since the estimated parameters were frequently
non-competitive, this feature was removed. However, SEAL
still ensures that the chosen parameters offer 128-bit security.
The source code is available under an MIT license, is well
documented, and includes a wide range of examples for both
schemes. In addition, there are several demo applications (e.g.,
AsureRun [13]) that demonstrate more complex use cases.

D. TFHE

The Fast Fully Homomorphic Encryption Library over the
Torus (TFHE) was proposed in 2016 by Chillotti et al. [38]
and can be considered the successor of the FHEW library [54].
It is implemented in C++ and supports a variety of different
libraries for underlying FFT operations. TFHE is based on
the CGGI scheme and offers gate-by-gate bootstrapping with

1097

Name Input Lang.
Supported Schemes Features Accessibility Last Major

UpdateBFV CKKS GSW Bootstrapp. Levels Code Ex. Doc.

concrete ([53]) Rust # # # G# 11/2020
FHEW ([54]) C++ # # # # # 05/2017
FV-NFLlib ([55]) C++ # # # G# # 07/2016
HEAAN ([36]) C++ # # G# # 09/2018
HElib ([56]) C++ # 12/2020
lattigo ([57]) Go # # # 12/2020
PALISADE ([58]) C++ 04/2020
SEAL ([20]) C++, .NET # # 08/2020
TFHE ([21]) C++ # # # 05/2017

cuFHE ([59]) C++, Python # # # G# # 08/2018
nuFHE ([60]) C++, Python # # # 07/2019

Table I: Overview of existing FHE CPU-targeting (top) and GPU-targeting (bottom) libraries. Note that similar schemes are
summarized into categories, e.g., BFV/BGV as BFV and CGGI/TFHE/FHEW as GSW.

significantly reduced bootstrapping times, resulting in times
of less than 0.1 sec compared to 6 min for bootstrapping
in the HElib library. TFHE implements a variety of logic
gates like OR, NOR, MUX that are generally implemented
more efficiently than naive constructions from XOR and AND
would be. However, the library provides no assistance with
building more complex logic circuits like efficient comparators
and adders. TFHE’s source code is available under the Apache
License v2.0 and includes examples and documentation.

E. Other Libraries

In addition to the libraries we discussed above, we consid-
ered a large variety of other libraries [36], [53]–[55], [57]. We
also conducted a series of microbenchmarks to compare how
different implementations of the same scheme perform. How-
ever, due to space considerations we refer to our accompanying
online repository for details. Finally, GPU-based libraries like
cuFHE [59] and nuFHE [60] can offer significant speedups,
improving the already fast TFHE bootstrapping times by
around two orders of magnitude. However, as GPUs remain
considerably more expensive and less common in enterprise
datacenters, these speedups must be considered in context.

VI. FHE COMPILERS

This section provides an overview of existing FHE compil-
ers, i.e., tools that provide a high-level abstraction to develop
FHE-based applications, so developers do not have to deal
directly with homomorphic operations on ciphertexts. These
tools generally manage key setup, encryption, decryption, and
ciphertexts maintenance operations in the background. The
term compiler is used loosely in the context of FHE, as some
function more like interpreters or libraries to link against.

In Table II, we provide an overview of the various FHE
compilers and their properties. FHE compilers can roughly
be divided into generic tools for general purpose use and
tools that target specific applications. In the latter category,
we see compilers targeted at building Machine Learning (ML)
applications. In addition to supported schemes, which we again
group for conciseness, we also consider the plaintext spaces

supported by the tool. Even when the underlying scheme and
implementation support different plaintext spaces, compilers
generally only target binary or arithmetic plaintext spaces.

We consider a wide range of features and generally differ-
entiate between three states indicating full support (), partial
support (G#), or no support (#). For SIMD-Batching (SIMD),
we differentiate between tools that merely enable batching
and those that actively assist in working with vectorized
data. Similarly, we differentiate between manual, partially
assisted, and fully automated parameter selection (Params.).
While all tools include some form of automated ciphertext
maintenance operations (Ctxt. Mnt.), we segment tools into
those that use naive heuristics and those using more advanced
strategies. Additionally, we note whether or not tools try to
reduce the multiplicative depth (× Depth) of the circuits they
generate. For accessibility, we consider the same metrics as for
libraries, i.e., whether an implementation (Code) is available,
whether examples (Ex.) describe usage, and whether or not
API documentation (Doc.) is available. Similarly, we again
give a rough indication of age and activity by giving the date
of the last release or major update. Where no source code is
available to us, we have to omit these metrics (“–”).

Finally, Table III associates compilers with the libraries they
use. Here we can see SEAL being targeted by a significantly
larger number of compilers than any other library.

In the following, we introduce each compiler in more detail.

A. ALCHEMY

A Language and Compiler for Homomorphic Encryption
Made easY (ALCHEMY) was proposed by Crockett et al. in
2017 [69]. Input programs are specified in a special Domain-
Specific Language (DSL) implemented in Haskell and exe-
cuted as arithmetic circuits using a custom BGV implementa-
tion using the Λ◦λ lattice crypto library [52]. While it supports
SIMD batching, it does not offer an encoding/decoding API,
making it difficult to use. ALCHEMY automatically selects
suitable parameters by statically tracking the upper bound
of the ciphertext error but requires user-supplied modulus
candidates. However, this approach, based on type-level arith-

1098

Name
Input
Lang.

Schemes Ptxt.
Space

Features & Optimizations Accessbility Last Major
UpdateBFV CKKS GSW SIMD Params. Ctxt. Mnt. × Depth Code Ex. Doc.

ALCHEMY ([49]) Haskell # # Arithm. G# G# G# # G# # 02/2020
Cingulata ([51]) C++ # G# Binary # G# # 11/2019
E3 ([65]) C++ # Both G# # G# # 09/2020
EVA ([17]) Python # # Arithm. # # 11/2020
Marble ([50]) C++ # # Both G# G# G# # # 10/2018
RAMPARTS ([66]) Julia # # Arithm. # G# # – – –

CHET ([67]) C++ # # Arithm. G# G# # # – – –
nGraph-HE ([24]) Python # Arithm. # G# 08/2019
SEALion ([68]) Python # # Arithm. G# G# # # # 01/2019

Table II: Overview of existing general-purpose FHE compilers (top) and those specializing on machine learning (bottom). Note
that similar schemes are summarized into families, e.g., BFV/BGV as BFV and CGGI/TFHE/FHEW as GSW.

FHEW
HEAAN

HElib
PA

LIS
ADE

SEAL
TFHE

ALCHEMY # # # # # #

Cingulata # # # # #

E3 # #

EVA # # # # #

Marble # # # #

RAMPARTS # # # # #

CHET # # # #

nGraph-HE # # # # #

SEALion # # # # #

Table III: Use of existing FHE libraries by FHE compilers.
Note that ALCHEMY implements BGV internally using the
Λ◦λ lattice cryptography library, and Cingulata also includes
a custom implementation of BFV.

metic, leads to excessively long compilation times and makes
ALCHEMY impractical for complex programs. While open-
source, the minimal examples are insufficient to allow non-
Haskell-experts to use the library, and it is therefore excluded
from our experimental evaluation.

B. Cingulata

Cingulata (previously Armadillo) was proposed in 2015
by Carpov et al. [51]. The compiler takes C++ code as
input and generates a corresponding Boolean circuit. Cingulata
implements the BFV scheme directly, using the Flint and
Sage libraries for operations on polynomials. We refer to this
built-in BFV implementation as CinguBFV. Cingulata also
supports the CGGI scheme via the TFHE library, but advanced
optimizations are not supported in this mode. Recent versions
include CinguParam [70], which automatically determines pa-
rameters for BFV. Cingulata inserts relinearization operations
naively but tries to reduce the circuit’s multiplicative depth
using the circuit optimization tool ABC [71], which was
originally designed for hardware synthesis. However, follow-
up work has introduced novel FHE-specific depth-reduction
heuristics [72]–[74]. Cingulata’s source code is available under
the CeCILL license and includes many examples.

C. Encrypt-Everything-Everywhere

The Encrypt-Everything-Everywhere (E3) framework was
proposed by Chielle et al. [65] in 2018. E3 uses C++ as
its input language and supports both arithmetic and boolean
circuits in BFV, BGV, and CGGI. E3 supports SIMD opera-
tions but does not expose rotation operations, severely limiting
the expressiveness. Users must provide parameters as part
of the configuration, and ciphertext maintenance operations
are inserted naively. It uses the Synopsys Design Compiler,
a proprietary tool for hardware design, to try to reduce the
circuit’s multiplicative depth. Internally, it supports a variety
of libraries, including TFHE, FHEW, HElib, and SEAL. E3’s
source code is available online and includes both examples
and documentation.

D. EVA & CHET

The Encrypted Vector Arithmetics Language and Compiler
(EVA) was presented by Dathathri et al. [17] in 2019. It
introduces a novel input language explicitly designed for
vector arithmetic and targets arithmetic circuits in CKKS using
the SEAL library. It is inherently batched and focuses on
automating parameter selection and ciphertext maintenance.
The program is converted into a term graph, and during
multiple passes, graph rewriting rules transform it, e.g., by
inserting relinearization and rescaling operations at the optimal
locations. However, EVA does not consider depth-reducing
transformations. While EVA can be used for any (vectorized)
application, the focus is primarily on neural network inference.
Towards this end, EVA includes and subsumes prior work
in the form of the Compiler and Runtime for Homomorphic
Evaluation of Tensor Programs (CHET) [67], which focuses
on optimizing matrix-vector operations. EVA and its examples
are available under the MIT license. CHET, however, is not.

E. Marble

Marble, presented by Viand et al. in 2018 [50] offers a
high-level interface for FHE in C++ by overloading built-in
operators. For arithmetic circuits, it targets BFV via the SEAL
library, and for binary circuits, BGV as implemented in the
HElib library. Marble exposes a batched version of the API,
allowing relatively efficient implementation, but it requires that

1099

the developer provides a suitably vectorized program. How-
ever, Marble provides only rudimentary parameter selection,
inserts ciphertext maintenance operations naively, and does not
apply any program optimizations. While a version of Marble
is available online, the available code supports only binary
circuits. Since Marble targets an outdated version of HElib
and focuses on usability over optimizations, we do not include
it in our experimental evaluation.

F. Ramparts

Ramparts was proposed in 2019 by Archer et al. [66]. It uses
Julia, a language for interactive scientific computing, as its
input language, and targets arithmetic circuits in BFV using the
PALISADE library. Ramparts does not support batching, but
includes noise-growth-estimation based parameter selection.
Ciphertext maintenance operations are inserted naively, but
a symbolic simulator simplifies the circuit by applying sub-
expression elimination, constant folding, and partial evalua-
tion (e.g., loop unrolling, function inlining). Ramparts is not
publicly available. Therefore, we were unable to include it in
our experimental evaluation. However, Rampart’s evaluation
compares it against Cingulata and a baseline using PALISADE
directly. The evaluation showed significant performance ben-
efits compared to Cingulata; however, in exchange, Ramparts
is limited to programs that can be expressed as polynomial
functions and the symbolic evaluation approach significantly
increases compilation times.

G. nGraph-HE

The nGraph-HE framework, proposed by Boemer et al. [75]
in 2019, is based on Intel’s nGraph ML compiler [76] and
translates standard TensorFlow computations into arithmetic
circuits in BFV or CKKS using the SEAL library. It en-
ables inference on pre-trained models over encrypted inputs,
applying FHE-specific optimizations (e.g., constant folding,
SIMD-packing, and graph-level optimizations such as lazy
rescaling and depth-aware encoding), and run-time optimiza-
tions (e.g., bypassing special plaintext values). However, it
inserts rescaling operations naively and requires the user to
define the parameters. In subsequent work [24], nGraph-HE
was extended to support non-polynomial activation functions.
However, these are computed in an interactive protocol with
the client, which introduces significant latency and is out of
scope for our study. nGraph-HE is available under the Apache
License v2.0 and includes examples and documentation.

H. SEALion

The framework SEALion, proposed by Van Elsloo [68]
in 2019, exposes a custom Python API for specifying ML
models, which are trained using TensorFlow. SEALion then
enables inference over encrypted data using arithmetic circuits
in BFV using the SEAL library. SEALion supports batching
to increase inference throughput by performing inference
over multiple data simultaneously but does not consider non-
trivial batching optimizations. Further, it features automatic
parameter selection using a heuristic search algorithm to

find an optimal parameter set. However, it inserts ciphertext
maintenance operations naively and does not consider depth-
reducing optimizations. SEALion is not currently publicly
available; however, the authors shared their implementation
with us, and the code includes well-commented examples.

VII. EXPERIMENTAL EVALUATION

In the following, we present our experimental evaluation,
where we investigate FHE compilers in more detail. We use
these tools to implement and benchmark selected case study
applications. This allows us to provide an in-depth analysis of
their usability and expressiveness in practice, and to compare
the performance characteristics of current FHE compilers.

Since there are no standardized benchmarks for FHE, com-
paring performance across tools is generally difficult without
implementing a task in a variety of tools. Motivated by that,
we selected three applications that represent different domains
of FHE-based computation. Each is designed to showcase
complex issues arising when working with FHE, yet also
remain simple and easy to reproduce across tools. First, we
present a risk score calculation that requires comparisons and,
therefore, binary circuit emulation. While simple, this repre-
sents a class of heavily branched programs that is common in
traditional programming but hard to express in FHE. Second,
we consider a statistical χ2-test, in a formulation that simpli-
fies it to polynomial functions over integers. This represents
a variety of interesting analysis methods that are ill-suited to
FHE by default but can be reformulated or approximated to
allow efficient implementations. We focus only on the core
computation, however in practical deployments, this would
probably be preceded by a homomorphic aggregation over
user data. Finally, we consider machine learning, specifically
neural network inference for a range of network architectures.
We evaluate a range of increasingly complex models and show
how commonly used architectures are adapted for FHE.

In our evaluation, we consider three dimensions: usability,
expressiveness, and performance. We start by describing each
application in detail, then report on the process of imple-
menting these applications in the different tools, highlighting
strengths and challenges. Where required, we describe adjust-
ments made to the applications due to limits in expressiveness.
Finally, we present our benchmarking results and highlight the
impact of specific techniques or optimizations.

A. Applications

1) Cardio: The cardio risk factor assessment (cardio) ap-
plication computes a score representing a patient’s risk of
cardiac disease. The application takes metrics such as age,
gender, weight, drinking habits and smoking behavior where
some are integer-valued and others boolean flags as input. As
illustrated in Listing 1, the computation consists of a series of
simple rules over the inputs that use comparisons and boolean
operators. The algorithm is derived from an implementation
in [77]. Due to its reliance on comparison operations, the
program requires emulation using binary circuits.

1100

Listing 1: The Cardio application.
+1 if man && age > 50 years
+1 if woman && age > 60 years
+1 if smoking
+1 if diabetic
+1 if high blood pressure
+1 if HDL cholesterol < 40
+1 if weight > height-90
+1 if daily physical activity < 30
+1 if man && alcohol cons. > 3 glasses/day
+1 if !man && alcohol cons. > 2 glasses/day

We encode the inputs as 8 bit numbers and encrypt them
at the client-side. The server receives the encrypted data,
computes the risk score, and returns the encrypted score
back to the client. While the inputs are obviously sensitive
information, the cardio risk assessment algorithm is public and
could easily be calculated client-side. However, it is easy to
imagine other applications where a service provider might not
want to share the algorithm with a client. For example, similar
algorithms are still widely used for risk assessment or fraud
detection, and knowledge of the criteria considered makes it
easier to circumvent these checks. For simplicity, we omit the
noise flooding required to provide (practical) circuit privacy
in our example.

2) Chi-Squared Test: χ2 or chi-squared tests are common
statistical tests. For our application, we specifically consider
Pearson’s Goodness-of-Fit test as it can be used to test for
deviation from the Hardy-Weinberg equilibrium in Genome-
Wide Association Studies (GWAS).

We split the computation into a polynomial part on the
server and a final set of divisions on the client, as proposed
by Lauter et al. [47]. First, the server receives the encrypted
genotype counts N0, N1, N2, then it computes α = (4N0N2−
N2

1)2, β1 = 2(2N0+N1)2, β2 = (2N0+N1)(2N2+N1), β3 =
2(2N2 +N1)2 and returns the encrypted results to the client.
Decrypting these, the client can compute the test statistic as
X2 = α

2N (1
β1

+ 1
β2

1
β3

). This transformation introduces some
slight leakage of intermediate values but in return enables an
application that would otherwise be infeasible. A more realistic
deployment scenario would most likely first see the server
calculate the genotype counts over an encrypted genomic
database. While this application is comparatively simple, it
is nevertheless practically relevant as seen by its application
to genomic studies. Additionally, its simplicity allows us to
focus more clearly on the overheads introduced by each tool.

3) NN Inference: The neural-network inference application
demonstrates FHE’s capabilities for privacy-preserving ma-
chine learning. Specifically, we consider inference (or pre-
diction) on a simple image recognition task, i.e., recognizing
handwritten digits from the MNIST dataset [78]. MNIST is
a common benchmark in machine learning applications and
can be solved effectively by many techniques. In MNIST,
individual inputs are 28× 28 pixel images containing a sin-
gle handwritten digit. First, the network is trained over a
large number of plaintext images. Later, a client submits an
encrypted input and the model owner returns the encrypted
prediction. This guarantees the privacy of the input and gives

strong practical protections for the privacy of the model. When
only the model parameters, but not the general architecture,
need to be protected, formal circuit privacy is not required.

B. Implementation Considerations

In this section, we explain our selection of tools for each
application and briefly discuss implementation challenges we
faced. A more detailed documentation of our implementations
and design choices is available in our online repository3.

1) Cardio: The cardio risk factor assessment requires com-
puting several comparisons between integers, which are hard
to approximate polynomially and therefore require binary
circuit emulation. As a baseline, we implemented the programs
manually in SEAL and TFHE. Since EVA targets CKKS,
which is less well suited to binary emulation, we do not
consider it here. The Cingulata and E3 compilers, on the other
hand, support binary plaintext spaces natively.

In SEAL and TFHE, we needed to manually implement
binary adders and comparators. This is significantly eas-
ier in TFHE, where multiplicative depth is not a concern
and a simple ripple-carry-adder is sufficient. Therefore, our
optimized TFHE implementation merely improves the final
summation of risk factors by using a tree of adders. While
our naive SEAL implementation also uses a ripple-carry-
adder, we also implemented an optimized version where we
implemented a Sklansky-adder, which trades off additional
operations for lower depth. In the optimized version, we also
made heavy use of in-place and plaintext-ciphertext versions of
the homomorphic operations, simplified expressions as much
as possible, and manually determined optimal parameters.
Finally, we implemented an optimized batched variant, which
required significant changes to the computation structure, i.e.,
transforming all ten conditions into the form a && b < c
by introducing dummy values and operations.

Cingulata makes the implementation significantly more
straight-forward as it contains built-in circuits for common
operations such as addition, multiplication, and comparisons.
Therefore, the program is virtually identical to its plaintext
counterpart. However, the compilation process is complex,
and the interactions between the compiler and runtime system
are not well documented. This made it hard to integrate the
different mult-depth reduction techniques available, and it
required significant amounts of trial-and-error to determine,
e.g., how Cingulata differentiates between secret and plaintext
inputs in the circuits it generates.

E3 offers a similar and even arguably more powerful API
than Cingulata. For example, it supports both binary and
arithmetic plaintext spaces and can switch ciphertexts between
them. In a similar vein, very few changes were needed to
re-target our SEAL (BFV) implementation to TFHE (CGGI).
However, an initial lack of documentation and very long
compile times made developing and debugging applications
difficult. While E3 features some support for batching, this
is quite limited. Specifically, it does not include rotation
operations that are essential to fully express the program’s

3https://github.com/MarbleHE/SoK.

1101

batched version. Therefore, the E3 batched version remains
somewhat incomplete.

2) Chi-Squared Test: The Chi-Squared test, at least as re-
formulated in our application, uses only addition and multi-
plication over integers, making it ideally suited for integer-
based FHE schemes. Nevertheless, we also consider imple-
mentations targeting binary emulation for comparison. We
manually implemented the application in SEAL, targeting the
BFV schemes and an integer plaintext space. In our optimized
version, we manually select optimal parameters, use in-place
operations where possible and reuse common sub-expressions.
Our manual implementations in SEAL closely match the math-
ematical description as all operations are native operations.
Nevertheless, both the naive and the optimized implementation
required over 100 lines of code. Our TFHE-based manual
implementations additionally required implementing a binary
adder and multiplier to support the computation, resulting in
several hundred lines of code. EVA, in contrast, allowed us to
easily express the same computation in around a dozen lines
of code. While the EVA implementation targets CKKS, the
precision is sufficient to ensure that, when rounding back to
integers, the result perfectly matches the other BFV/integer-
based implementations. While Cingulata supports the BFV
scheme, it only supports binary plaintext spaces. Therefore, it
must also emulate integer multiplications using binary circuits.
However, since it hides the complexity of generating efficient
circuits from the user, this matters only for performance, not
for usability. Both Cingulata and E3 can target integer-based
BFV and binary CGGI with minimal changes required. Note
that batching this application would be trivial but only impacts
throughput, not latency, and is therefore omitted.

3) NN-Inference: The MNIST problem is comparatively
easy to solve, with simple approaches easily achieving more
than 90% accuracy and even small neural networks achiev-
ing around 95% accuracy. State-of-the-art networks achieve
up to 99.5% test accuracy. However, increasing accuracy
quickly requires exponentially more complex models. In our
evaluation, we used three different model architectures of
increasing complexity. First, we used a simple Multi-Layer
Perceptron (MLP) as a baseline, i.e., two fully connected
layers with a non-linear activation. Next, we consider a more
complicated Convolutional Neural Network (CNN), specifi-
cally the Cryptonets architecture [79] designed specifically for
FHE, which consists of 5 layers and two activations. Finally,
we also evaluated a LeNet-5-like [80] network, which is a
significantly more complex design and more representative
of networks used to solve challenging tasks in practice. This
network consists of 7 layers and three activations. We use
a technique from [67] and learn a degree-two polynomial
approximation of the ReLU activation function during training.

SEALion and nGraph-HE focus exclusively on machine
learning inference, directly using TensorFlow programs or
TensorFlow-like programs as their inputs. While SEALion
can currently only express a simple MLP network, nGraph-
HE seems to support the full TensorFlow feature set. Both
make FHE-based development nearly as easy as working with

standard TensorFlow. While EVA does not directly support
machine learning tasks, the CHET tool can be re-targeted to
EVA, and we consider an EVA program for a LeNet-5 model
generated by CHET, in addition to a manually implemented
MLP. We complemented the comparison between the tools
with a baseline implementation of an MLP in SEAL, using
the CKKS scheme and manually implementing matrix-vector-
product optimizations from [43], which required significant
engineering effort.

C. Effects of Optimizations

This section presents the results of our benchmarks, with a
particular focus on the effect that automation and optimization
have on runtime. All benchmarks run on an AWS instance
(m5n.xlarge), equipped with 4 vCPUs and 16 GB RAM. The
reported results are mean values computed over 10 test runs.

1) Cardio: In Figure 2, we report the run time for the
cardio risk factor assessment application in different setups.
We see a large span of results, between less than 5 seconds for
the manual optimized implementation and over three minutes
for the slowest tool-generated implementations. E3 seems to
introduce significant overheads, even when compared to naive
implementations targeting the same library. Cingulata’s BFV
implementation (CinguBFV) seems considerably slower than
SEAL’s, but we can still observe the effect of the different
depth-reduction approaches, with multi-start (E) cutting com-
putation time in half. Comparing our manual implementations,
we see both of our TFHE implementations outperforming the
naive and (non-batched) optimized SEAL implementation as
expected. Cingulata’s TFHE implementation actually further
outperforms our manually optimized TFHE implementation,
even when our manual program uses fewer gates. This speedup
might be due to better memory management or due to slightly
different TFHE environments. However, by far the best perfor-
mance is achieved when using batching in SEAL, even though
this application is inherently binary-based and ten conditions
are a relatively small number to batch in the context of FHE.

2) Chi-Squared Test: In Figure 3, we present the runtimes
for the chi-squared test application, using a logarithmic scale
due to the large range of values. We contrast manually- and
tool-generated implementations targeting SEAL and TFHE
and compare this against Cingulata’s implementation targeting
the built-in BFV implementation. The manually optimized
SEAL implementation and EVA-generated implementation
outperform the others by a large margin, requiring less than
a second. With 16.46 s, a slowdown of more than 10×,
the E3 program targeting SEAL is significantly slower, but
the overhead compared to the naive solution is negligible.
Meanwhile, Cingulata targeting CinguBFV suffers from both
using binary emulation unnecessarily and a generally slower
BFV implementation. Since the program already has minimal
depth, we omit a discussion of the different depth-reduction
heuristics here. Similarly, our TFHE optimizations seem to
have no positive effect on this simple program, while Cingulata
is again faster per-gate in TFHE, possibly due to configuration
differences. Finally, we note that the TFHE implementation

1102

SEAL
(Opt.*/Opt./E3*/E3/Naive)

CinguBFV
(A/B/C/D/E)

TFHE
(Opt./Cingulata/E3/Naive)

0

50

100

150

200

T
im

e
[s

]
Dec.

Comp.

Enc.

Key Gen.

Figure 2: Runtime of the cardio benchmark. We group com-
piler generated and manually optimized and naive programs
by the FHE implementation they target. For CinguBFV, we
consider circuits using different depth-optimization approaches
(A: baseline, B: ABC, C: Lobster, D: Cingulata, E: Multi-
Start). * indicates batching was used.

SEAL
(Opt./E3/EVA/Naive)

CinguBFV
(Cingulata)

TFHE
(Opt./Cingulata/E3/Naive)

1

10

100

1K

T
im

e
[s

]

Decryption

Computation

Encryption

Key Generation

Figure 3: Runtime of the chi-squared test benchmark using
a logarithmic scale. We group compiler generated, optimized
and naive programs by the FHE implementation they target.

generated by E3 is around 9× slower than native implementa-
tions, which are already non-competitive compared to integer-
based solutions. In combination with the cardio benchmarking
results, this indicates that E3 generates binary adder/multiplier
circuits inefficiently when using binary emulation.

3) NN Inference: We present the evaluation results for the
neural-network inference task in Figure 4, reporting latency,
i.e., the time to run encrypted prediction on a single image.
Note that SEALion and nGraph-HE use SIMD-style batching
to achieve higher throughput at the same latency. For nGraph-
HE, it was not possible to provide individual sub-timings, as
key-generation, encryption, and decryption are invisible to the
application code. We first compare our manual implementation
of an MLP both directly in SEAL and using EVA against
the same network architecture implemented in SEALion and
nGraph-HE, which offer much higher-level interfaces. All
models achieved around 95% accuracy, nearly identical to
their plaintext equivalents. Note that for SEALion, the overall
runtime is artificially inflated because the tool encrypts the
input against a range of possible parameter sets instead of
only the targeted one. Taking this into account, we can see that
despite us implementing several optimization techniques from
the literature, the higher-level tools clearly outperform the
manual implementation. In the case of SEALion, this appears
to be due to automatic sparsification, which reduces the net-

120

130

Manual
(MLP)

SEALion
(MLP)

nGraph-HE
(MLP, CryptoNets, LeNet-5)

EVA
(MLP, LeNet-5)

0

10

20

T
im

e
[s

]

Decryption

Computation

Encryption

Key Generation

Figure 4: Runtime of the neural network inference benchmark,
i.e., recognizing handwritten digits from the MNIST dataset.
All implementations target SEAL. We implement a simple
multi-layer-perceptron (MLP). For nGraph-HE and EVA, we
also consider more complex models (CryptoNets, LeNet-5).

work’s size. Finally, we explored more complex models using
nGraph-HE and EVA, using CHET-generated programs for the
latter. The Cryptonets CNN architecture significantly increases
accuracy (to 98%) at a minimal increase in computation
cost. However, achieving state-of-the-art network performance
(99+%) requires a considerably more complex LeNet-5-like
network, which takes around 13 seconds to run using EVA
and more than two minutes using nGraph-HE.

VIII. DISCUSSION

In this section, we discuss some key questions in the space
of FHE and FHE tools:

A. What applications can be developed using FHE today?

While FHE can be practical for a wide variety of applica-
tions, there remain many applications that are not yet feasible
using FHE. Applications that make sense for FHE generally
feature a client-server scenario where both the input data and
the algorithm need to be kept private. In addition, there are
practical limits to the complexity of the applications that can
be outsourced. As a very rough heuristic, computations that
take more than a few hundred milliseconds without FHE are
unlikely to be practical once translated into FHE as of today.
However, this very much depends on the application scenario.
Generally, online computations where immediate feedback is
expected are more challenging. For example, face recognition
applications at an airport might tolerate a few seconds of
delay at most. On the other hand, offline tasks like computing
statistics over the results of a year-long medical study can be
considered practical even if taking considerable time.

For non-expert users, the range of applications that can
be realized in practice also depends significantly on the
available tools. Using libraries like SEAL, PALISADE, or
HElib makes it easy to implement simple computations that
can be expressed as low-degree polynomials (e.g., the modified
χ2 test), and tools like nGraph-HE enable novice users to
easily implement linear ML models, simple statistics, and
neural network inference. For more experienced users, this
question becomes increasingly difficult to address in general
terms. The implementation challenges we describe for our

1103

case studies show that application complexity and FHE im-
plementation complexity do not necessarily correlate. Finally,
some applications require modifications or extensions of the
underlying cryptographic primitives. These include compu-
tations that require switching between different schemes or
between FHE and MPC homomorphically. Many applications
can already be solved practically using these or other novel
programming paradigms. Frequently, success in implementing
an efficient FHE-based solution for an application depends
less on the performance of the underlying FHE tools but on
how the application is translated. Exploiting the advantage of
SIMD-batching, e.g., using EVA, requires designing heavily
vectorized programs for a setting with significantly more
restrictions than, e.g., AVX vector instructions. In addition,
many applications become feasible only after slight modi-
fications,e.g., using polynomial approximations or rewriting
expressions so that hard-to-compute operations (e.g., square
roots) are delayed until the end to allow them to be performed
client-side after decryption. By presenting these paradigms
more clearly and targeting an audience beyond the crypto
community, the set of applications that developers can expect
to realize successfully using FHE will expand significantly.

B. When to use which of the FHE tools?

Given the choice of different tools that each present slightly
different features and strengths, selecting the appropriate tool
for a given application can be non-trivial. However, not all
tools that can implement a solution are necessarily suitable
choices, as demonstrated in our evaluation. Current tools
generally excel at specific workloads or application domains,
and here we try to provide some recommendations for tools
to consider for common application scenarios.

For generic applications that compute non-polynomial func-
tions or require binary emulation, there are multiple options
with different tradeoffs. If working primarily with integers,
the programmable bootstrapping offered by the concrete li-
brary is an obvious choice. While compilers like Cingulata
(CinguBFV) or E3 are easier to work with, the performance
overhead they introduce might be unacceptable for many
applications. For applications requiring a true binary plaintext
space, Cingulata (TFHE) is most likely the easiest approach.

For applications that compute (polynomial) statistics over
large amounts of data, we recommend the EVA compiler
targeting CKKS for applications requiring approximate num-
bers. If working with integers only, we recommend working
directly with the SEAL library targeting BFV, since BFV is
less complex to work with and current compilers targeting
it introduce significant slowdowns. The batching offered by
these schemes can be a natural fit when computing aggregate
statistics or retrieving information from encrypted databases.

For applications that involve or use machine learning infer-
ence, the recommended approach depends on the complex-
ity of the used ML model. Where training a model with
polynomial activation functions produces sufficient accuracy,
we recommend using the nGraph-HE compiler targeting the
CKKS scheme. nGraph-HE supports virtually all TensorFlow

features, including the Keras model definition API, making
it trivial to port existing models. In addition, nGraph-HE
offers excellent performance that can easily outperform even
a fairly involved manual implementation. Where deeper/recur-
sive networks or standard activation functions (e.g., ReLU) are
required to achieve the desired accuracy, the programmable
bootstrapping functionality offered by the concrete library
makes it the most suitable choice. However, this will require
significantly more engineering effort as there are currently no
higher-level compilers targeting concrete.

C. Where should FHE tools go from here?

Both FHE compilers and libraries remain complex to use,
and there are obvious low-hanging fruits in terms of usability
that include better documentation and more extensive exam-
ples. In addition, there is a general lack of interoperability,
not just technically but also conceptually. For example, even
libraries implementing the same scheme can offer surprisingly
different APIs. The ongoing standardization efforts are trying
to create a unified view of the most popular schemes, including
standardized APIs for the most common operations. However,
this does not address the various extension of the API, e.g.,
optimizations for squaring rather than multiplying or per-
forming operations in-place. This would be solved ideally by
introducing a common intermediate representation language
that compilers can target and libraries can implement.

The existing tools have successfully reduced the complexity
of working with complex FHE schemes. There is a large
choice of libraries providing secure and efficient implementa-
tions of current schemes. In addition, compilers have emerged
that make it significantly easier to realize computations effi-
ciently, e.g., by automatically choosing parameters or inserting
ciphertext maintenance operations. However, this still leaves
the user with the significant challenge of translating an applica-
tion into an appropriate FHE computation in the first place. For
example, tools could automatically vectorize iteratively written
programs or offer suggestions on aspects of the computation
that would be beneficial to extract to the client-side.

Finally, it is worth noting that we have considered only
FHE tools in our analysis and discussion. However, real-world
problems are frequently complex and require a combination of
techniques, including FHE, Multi-Party Computation (MPC),
and Zero-Knowledge Proofs (ZKP). In the long term, the
secure computation community could gain tremendously by
considering these problems more holistically and building
tools that support a wider range of techniques.

ACKNOWLEDGMENTS

We thank our shepherd, the anonymous reviewers, and
Kenny Paterson for their valuable feedback. We thank the
FHE tool developers and maintainers for making their code
available and the CHET/EVA and SEALion developers for
their help and for providing us with access to their tools. This
work was supported in part by the SNSF Ambizione Grant
No. 186050.

1104

REFERENCES

[1] H. Saleem and M. Naveed, “SoK: Anatomy of Data Breaches,”
Proceedings on Privacy Enhancing Technologies, vol. 2020, no. 4,
pp. 153–174, 2020. [Online]. Available: http://isyou.info/jowua/papers/
jowua-v10n4-4.pdf

[2] L. Cheng, F. Liu, and D. D. Yao, “Enterprise Data Breach: Causes,
Challenges, Prevention, and future Directions,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 5, 2017.

[3] “Zama,” accessed: 2020-12-21. [Online]. Available: https://zama.ai/
[4] Enveil, “Enveil raises $10 million in series a fund-

ing,” 18 Feb. 2020, accessed: 2020-12-21. [Online].
Available: https://www.globenewswire.com/news-release/2020/02/18/
1986152/0/en/Enveil-Raises-10-Million-in-Series-A-Funding.html

[5] Inpher, “J.P. morgan leads USD $10 million financing in leading data
security and machine learning provider, inpher,” 2 Nov. 2018, accessed:
2020-12-21. [Online]. Available: https://www.prnewswire.com/news-
releases/jp-morgan-leads-usd-10-million-financing-in-leading-data-
security-and-machine-learning-provider-inpher-300743090.html

[6] I. Lunden, “Duality, a security startup co-founded by the creator
of homomorphic encryption, raises $16m,” TechCrunch, 30 Oct.
2019. [Online]. Available: http://techcrunch.com/2019/10/30/duality-
cybersecurity-16-million/

[7] R. Jain, “Data encryption provider IXUP appoints new
CEO & MD marcus gracey,” accessed: 2020-12-21. [Online].
Available: https://itmunch.com/data-encryption-provider-ixup-appoints-
new-ceo-md-marcus-gracey/

[8] M. Loritz, “Paris-based cosmian raises C1.4 for its
platform that analyses encrypted data while keeping
it private,” accessed: 2020-12-21. [Online]. Available:
https://www.eu-startups.com/2019/03/paris-based-cosmian-raises-e1-4-
for-its-platform-that-analyses-encrypted-data-while-keeping-it-private/

[9] C. Osborne, “IBM launches experimental homomor-
phic data encryption environment for the enter-
prise,” Dec. 2020, accessed: 2020-12-21. [Online].
Available: https://www.zdnet.com/article/ibm-launches-experimental-
homomorphic-data-encryption-environment-for-the-enterprise/

[10] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On
data banks and privacy homomorphisms,” Foundations of secure
computation, vol. 4, no. 11, pp. 169–180, 1978. [Online].
Available: https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-
OnDataBanksAndPrivacyHomomorphisms.pdf

[11] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009. [Online]. Available: https:
//crypto.stanford.edu/craig/

[12] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Designs, Codes and Cryptography. An International Journal, vol. 71,
no. 1, pp. 57–81, Jan. 2014. [Online]. Available: https://doi.org/10.
1007/s10623-012-9720-4

[13] Microsoft, “AsureRun,” 11 May 2019. [Online]. Available: https:
//github.com/microsoft/SEAL-Demo/tree/master/AsureRun

[14] M. Kim, A. Harmanci, J.-P. Bossuat, S. Carpov, J. H. Cheon,
I. Chillotti, W. Cho, D. Froelicher, N. Gama, M. Georgieva,
S. Hong, J.-P. Hubaux, D. Kim, K. Lauter, Y. Ma, L. Ohno-
Machado, H. Sofia, Y. Son, Y. Song, J. Troncoso-Pastoriza, and
X. Jiang, “Ultra-Fast homomorphic encryption models enable secure
outsourcing of genotype imputation,” May 2020. [Online]. Available:
https://www.biorxiv.org/content/10.1101/2020.07.02.183459v2

[15] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled PSI from Fully
Homomorphic Encryption with Malicious Security,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. Toronto Canada: ACM, Jan. 2018, pp. 1223–1237. [Online].
Available: https://eprint.iacr.org/2018/787

[16] M. Kim, Y. Song, B. Li, and D. Micciancio, “Semi-Parallel
Logistic Regression for GWAS on Encrypted Data.” IACR Cryptology
ePrint Archive, vol. 2019, p. 294, 2019. [Online]. Available: https:
//eprint.iacr.org/2019/294

[17] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and
M. Musuvathi, “EVA: An encrypted vector arithmetic language and
compiler for efficient homomorphic computation,” in Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, 27 Dec. 2019. [Online]. Available: http://arxiv.org/
abs/1912.11951

[18] E. J. Chou, A. Gururajan, K. Laine, N. K. Goel, A. Bertiger, and J. W.
Stokes, “Privacy-preserving phishing web page classification via fully
homomorphic encryption,” in ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020,
pp. 2792–2796.

[19] M. Driver, “Emerging technologies: Homomorphic encryption for data
sharing with privacy,” Gartner, Inc, Tech. Rep., 23 Apr. 2020.

[20] “Microsoft SEAL (release 3.5),” Apr. 2020. [Online]. Available:
https://github.com/Microsoft/SEAL

[21] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast
fully homomorphic encryption library,” Aug. 2016. [Online]. Available:
https://tfhe.github.io/tfhe

[22] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser,
S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter,
S. Lokam, D. Micciancio, D. Moody, T. Morrison, A. Sahai,
and V. Vaikuntanathan, “Homomorphic encryption security standard,”
HomomorphicEncryption.org, Toronto, Canada, Tech. Rep., Nov. 2018.
[Online]. Available: https://homomorphicencryption.org

[23] N. Barlow, T. Lazauskas, O. Strickson, and A. Gascon, “SHEEP: A
homomorphic encryption evaluation platform,” Nov. 2019. [Online].
Available: https://github.com/alan-turing-institute/SHEEP

[24] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski,
“nGraph-HE2: A High-Throughput framework for neural network
inference on encrypted data,” in Proceedings of the 7th ACM Workshop
on Encrypted Computing & Applied Homomorphic Cryptography, ser.
WAHC’19. New York, NY, USA: Association for Computing
Machinery, Nov. 2019, pp. 45–56. [Online]. Available: https:
//doi.org/10.1145/3338469.3358944

[25] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A Survey on
Homomorphic Encryption Schemes: Theory and Implementation,” ACM
Computing Surveys, vol. 51, no. 4, pp. 1–35, Jul. 2018.

[26] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “SoK:
General purpose compilers for secure Multi-Party computation,”
in IEEE Symposium on Security and Privacy (SP). Los Alamitos,
CA, USA: IEEE Computer Society, 2019, pp. 479–496. [Online].
Available: https://www.computer.org/csdl/proceedings/sp/2019/6660/00/
666000a462-abs.html

[27] P. Paillier, “Public-Key cryptosystems based on composite degree
residuosity classes,” in Advances in Cryptology — EUROCRYPT ’99,
ser. EUROCRYPT. Prague, Czech Republic: Springer, Berlin,
Heidelberg, May 1999, pp. 223–238. [Online]. Available: http:
//link.springer.com/chapter/10.1007/3-540-48910-X 16

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978. [Online]. Available:
http://dl.acm.org/citation.cfm?id=359342&

[29] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Theory of Cryptography. Springer, Berlin, Heidelberg,
Feb. 2005, pp. 325–341. [Online]. Available: http://link.springer.com/
chapter/10.1007/978-3-540-30576-7 18

[30] C. Gentry and S. Halevi, “Implementing gentry’s Fully-Homomorphic
encryption scheme,” in EUROCRYPT, 2011.

[31] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory, vol. 6, no. 3, pp. 13:1–13:36, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2633600

[32] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.
[Online]. Available: https://eprint.iacr.org/2012/144

[33] Z. Brakerski, “Fully Homomorphic Encryption without Modulus
Switching from Classical GapSVP,” in Advances in Cryptology –
CRYPTO 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
vol. 7417, pp. 868–886. [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-642-32009-5 50

[34] I. Iliashenko, “Optimisations of fully homomorphic encryption,” Ph.D.
dissertation, PhD thesis, KU Leuven, 2019. [Online]. Available:
https://www.esat.kuleuven.be/cosic/publications/thesis-316.pdf

[35] S. Halevi and V. Shoup, “Faster Homomorphic Linear Transformations
in HElib,” in Advances in Cryptology – CRYPTO 2018. Cham: Springer
International Publishing, 2018, vol. 10991, pp. 93–120. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-319-96884-
1 4

[36] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
Encryption for Arithmetic of Approximate Numbers,” in Advances

1105

in Cryptology – ASIACRYPT 2017. Cham: Springer International
Publishing, 2017, vol. 10624, pp. 409–437. [Online]. Avail-
able: https://www.springerprofessional.de/homomorphic-encryption-for-
arithmetic-of-approximate-numbers/15266370

[37] C. Gentry, A. Sahai, and B. Waters, “Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based,” in Advances in Cryptology – CRYPTO 2013. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, vol. 8042, pp. 75–92.

[38] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1
Seconds,” SpringerLink, pp. 3–33, Dec. 2016. [Online]. Available:
https://eprint.iacr.org/2016/870

[39] ——, “Faster packed homomorphic operations and efficient circuit
bootstrapping for TFHE,” in Advances in Cryptology – ASIACRYPT
2017. Springer International Publishing, 2017, pp. 377–408. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-319-70694-
8 14

[40] I. Chillotti, M. Joye, and P. Paillier, “Programmable bootstrapping
enables efficient homomorphic inference of deep neural networks,”
Zama, Tech. Rep., 15 Oct. 2020.

[41] C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Multiparty
homomorphic encryption: From theory to practice,” 2020. [Online].
Available: https://eprint.iacr.org/2020/304

[42] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient Multi-Key
homomorphic encryption with packed ciphertexts with application
to oblivious neural network inference,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’19. New York, NY, USA: Association for Computing
Machinery, Jun. 2019, pp. 395–412. [Online]. Available: https:
//doi.org/10.1145/3319535.3363207

[43] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
Low Latency Framework for Secure Neural Network Inference,” in
Proceedings of the 27th USENIX Conference on Security Symposium,
ser. SEC’18. Berkeley, CA, USA: USENIX Association, 2018,
pp. 1651–1668. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/juvekar

[44] C. Boura, N. Gama, and M. Georgieva, “Chimera: A unified framework
for B/FV, TFHE and HEAAN fully homomorphic encryption and
predictions for deep learning,” Aug. 2018. [Online]. Available:
https://eprint.iacr.org/2018/758

[45] A. Costache, K. Laine, and R. Player, “Evaluating the effectiveness of
heuristic worst-case noise analysis in FHE,” 2019. [Online]. Available:
https://eprint.iacr.org/2019/493

[46] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic Evaluation of
the AES Circuit,” in Annual Cryptology Conference. Springer, 2012,
pp. 850–867. [Online]. Available: https://link.springer.com/chapter/10.
1007/978-3-642-32009-5 49

[47] K. Lauter, A. López-Alt, and M. Naehrig, “Private computation on
encrypted genomic data,” in Progress in Cryptology - LATINCRYPT
2014. Springer International Publishing, 2014, pp. 3–27. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-16295-9 1

[48] S. Halevi and V. Shoup, “Algorithms in HElib,” in Advances
in Cryptology – CRYPTO 2014. Springer Berlin Heidelberg, 2014,
pp. 554–571. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-
44371-2 31

[49] E. Crockett, C. Peikert, and C. Sharp, “ALCHEMY: A Language and
Compiler for Homomorphic Encryption Made easY,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1020–1037.

[50] A. Viand and H. Shafagh, “Marble: Making fully homomorphic
encryption accessible to all,” in Proceedings of the 6th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography. ACM,
Oct. 2018, pp. 49–60. [Online]. Available: https://dl.acm.org/citation.
cfm?doid=3267973.3267978

[51] S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: A compilation
chain for privacy preserving applications,” in Proceedings of the 3rd
International Workshop on Security in Cloud Computing, ser. SCC ’15.
New York, NY, USA: ACM, 2015, pp. 13–19. [Online]. Available:
http://doi.acm.org/10.1145/2732516.2732520

[52] E. Crockett and C. Peikert, “Λoλ: Functional lattice cryptography,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 993–1005. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/2976749.2978402

[53] I. Chillotti, M. Joye, D. Ligier, J.-B. Orfila, and S. Tap,
“CONCRETE: Concrete operates on ciphertexts rapidly by
extending TfhE,” in WAHC 2020 – 8th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, 15 Dec. 2020.
[Online]. Available: https://homomorphicencryption.org/wp-content/
uploads/2020/12/wahc20 demo damien.pdf

[54] L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic
encryption in less than a second,” in Advances in Cryptology –
EUROCRYPT 2015. Springer Berlin Heidelberg, 2015, pp. 617–640.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-46800-5 24

[55] CryptoExperts, “FV-NFLlib,” May 2016. [Online]. Available: https:
//github.com/CryptoExperts/FV-NFLlib

[56] S. Halevi and V. Shoup, “Algorithms in HElib,” in Advances
in Cryptology – CRYPTO 2014, ser. Lecture Notes in Computer
Science, J. A. Garay and R. Gennaro, Eds. Springer, Berlin,
Heidelberg / Springer, Aug. 2014, pp. 554–571. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-662-44371-2 31

[57] C. Mouchet and J.-P. Bossuat, “Lattigo: A multiparty homomorphic
encryption library in go,” in WAHC 2020 – 8th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, 15 Dec.
2020. [Online]. Available: https://homomorphicencryption.org/wp-
content/uploads/2020/12/wahc20 demo christian.pdf

[58] Y. Polyakov, K. Rohloff, and G. W. Ryan, “PALISADE Lattice
Cryptography Library User Manual (v1.6.0),” Tech. Rep., Sep. 2019.
[Online]. Available: https://palisade-crypto.org/documentation

[59] Vernam Group, “cuFHE,” Mar. 2018. [Online]. Available: https:
//github.com/vernamlab/cuFHE

[60] NuCypher, “nufhe,” 19 Jul. 2019. [Online]. Available: https://github.
com/nucypher/nufhe

[61] V. Shoup and Others, “NTL: A library for doing number theory,” Aug.
2016. [Online]. Available: http://www.shoup.net/ntl/

[62] S. Halevi and V. Shoup, “Bootstrapping for HElib,” in Advances
in Cryptology – EUROCRYPT 2015, ser. Lecture Notes in Computer
Science, E. Oswald and M. Fischlin, Eds., Springer. Springer, Berlin,
Heidelberg / Springer, Apr. 2015, pp. 641–670. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-662-46800-5 25

[63] ——, “HElib design principles,” Tech. Rep., 2020. [Online]. Avail-
able: https://homenc.github.io/HElib/documentation/Design Document/
HElib-design.pdf

[64] R. Player, “Parameter selection in lattice-based cryptography,” Ph.D.
dissertation, PhD thesis, Royal Holloway, University of London,
2018. [Online]. Available: https://pure.royalholloway.ac.uk/portal/files/
29983580/2018playerrphd.pdf

[65] E. Chielle, O. Mazonka, N. G. Tsoutsos, and M. Maniatakos, “E3: A
Framework for Compiling C++ Programs with Encrypted Operands,”
IACR Cryptology ePrint Archive, vol. 2018, p. 1013, 2018. [Online].
Available: https://eprint.iacr.org/2018/1013

[66] D. W. Archer, J. M. Calderón Trilla, J. Dagit, A. Malozemoff,
Y. Polyakov, K. Rohloff, and G. Ryan, “RAMPARTS: A Programmer-
Friendly system for building homomorphic encryption applications,”
in Proceedings of the 7th ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography - WAHC’19. New York, New
York, USA: ACM Press, 2019, pp. 57–68. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3338469.3358945

[67] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “CHET: an optimizing compiler
for fully-homomorphic neural-network inferencing,” in Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation. New York, NY, USA: ACM, 8 Jun. 2019, pp. 142–
156. [Online]. Available: https://dl.acm.org/citation.cfm?doid=3314221.
3314628

[68] T. van Elsloo, G. Patrini, and H. Ivey-Law, “SEALion: A Framework
for Neural Network Inference on Encrypted Data,” arXiv preprint
arXiv:1904.12840, 2019. [Online]. Available: https://arxiv.org/abs/1904.
12840

[69] E. Crockett, “Simply safe lattice cryptography,” Ph.D. dissertation,
Georgia Institute of Technology, 2017. [Online]. Available: https:
//smartech.gatech.edu/handle/1853/58734

[70] V. Herbert, “Automatize parameter tuning in Ring-Learning-With-
Errors-based leveled homomorphic cryptosystem implementations,”
2019. [Online]. Available: https://eprint.iacr.org/2019/1402

[71] A. Mishchenko, “ABC: System for sequential logic synthesis and formal
verification,” 2018. [Online]. Available: https://github.com/berkeley-
abc/abc

1106

[72] S. Carpov, P. Aubry, and R. Sirdey, “A multi-start heuristic for
multiplicative depth minimization of boolean circuits,” in International
Workshop on Combinatorial Algorithms. Springer, 2017, pp. 275–
286. [Online]. Available: https://link.springer.com/chapter/10.1007/978-
3-319-78825-8 23

[73] P. Aubry, S. Carpov, and R. Sirdey, “Faster homomorphic encryption is
not enough: Improved heuristic for multiplicative depth minimization
of boolean circuits,” in Topics in Cryptology – CT-RSA 2020. Springer
International Publishing, 2020, pp. 345–363. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-40186-3 15

[74] D. Lee, W. Lee, H. Oh, and K. Yi, “Optimizing homomorphic
evaluation circuits by program synthesis and term rewriting,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2020. New York,
NY, USA: Association for Computing Machinery, Nov. 2020, pp.
503–518. [Online]. Available: https://doi.org/10.1145/3385412.3385996

[75] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “nGraph-HE:
A Graph Compiler for Deep Learning on Homomorphically Encrypted
Data,” in Proceedings of the 16th ACM International Conference on
Computing Frontiers, ser. CF ’19. New York, NY, USA: ACM, 2019,
pp. 3–13. [Online]. Available: https://dl.acm.org/doi/10.1145/3310273.
3323047

[76] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,
A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi et al.,
“Intel nGraph: An intermediate representation, compiler, and executor
for deep learning,” arXiv preprint arXiv:1801.08058, 2018. [Online].
Available: https://arxiv.org/abs/1801.08058

[77] S. Carpov, T. H. Nguyen, R. Sirdey, G. Constantino, and F. Martinelli,
“Practical Privacy-Preserving medical diagnosis using homomorphic
encryption,” in 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), Jun. 2016, pp. 593–599. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2016.0084

[78] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[79] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “CryptoNets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of the 33rd
International Conference on Machine Learning, vol. 48. New York,
New York, USA: PMLR, 2016, pp. 201–210. [Online]. Available:
http://proceedings.mlr.press/v48/gilad-bachrach16.html

[80] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. [Online]. Available:
https://ieeexplore.ieee.org/document/726791

[81] J. E. Savage, Models of Computation: Exploring the Power of Comput-
ing, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1997.

[82] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast fully homomorphic encryption over the torus,” 2018. [Online].
Available: https://eprint.iacr.org/2018/421

[83] J. H. Cheon, S. Hong, and D. Kim, “Remark on the security of ckks
scheme in practice,” Cryptology ePrint Archive, Report 2020/1581,
2020, https://eprint.iacr.org/2020/1581.

[84] B. Li and D. Micciancio, “On the security of homomorphic encryp-
tion on approximate numbers,” Cryptology ePrint Archive, Report
2020/1533, 2020, https://eprint.iacr.org/2020/1533.

[85] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography – SAC 2018. Springer International Publishing, 2019,
pp. 347–368. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-
10970-7 16

APPENDIX A

In this appendix, we briefly introduce the notion of FHE and
outline three important modern schemes. We focus primarily
on aspects relevant to FHE application developers, i.e., plain-
text spaces, encodings, and aspects that impact performance.

A. Fully Homomorphic Encryption

A homomorphic encryption scheme is a (most frequently
public-key) encryption scheme where there exists a homomor-
phism between operations on the plaintext and operations on
the ciphertext:

Dec(Enc(x+ y)) = Dec(Enc(x)⊕ Enc(y))

where + and ⊕ are operations over the plaintext and ciphertext
space, respectively. A fully homomorphic encryption scheme
is one that is homomorphic in regards to both addition and
multiplication. We omit a more formal treatment here and
instead refer to [11] for a formal definition, including several
constraints that apply to exclude trivial constructions.

Addition and multiplication allow us to compute any poly-
nomial function over the encrypted data but many frequently-
used functions like comparisons or sorting are non-polynomial,
i.e., cannot (easily) be expressed as polynomial functions.
However, multiplication and addition in Z2 can be used to
emulate AND- and XOR-gates, respectively. Together with
memory, this is Turing-complete, i.e., one can emulate arbi-
trary computations [81].

B. FHE Schemes

We briefly introduce three of the most widely used homo-
morphic encryption schemes.

1) CGGI: The Chillotti-Gama-Georgieva-Izabachene
scheme [38], [39] is part of a third generation of FHE schemes
based on the Gentry-Sahai-Waters (GSW) scheme [37]. More
commonly known as TFHE, we refer to it here by the author
initials in order to avoid confusion with the TFHE library.

In CGGI, the plaintext and ciphertext space T is a group of
polynomials (modulo some irreducible polynomial) of degree
up to n − 1 over the torus T = R/Z (i.e., the real num-
bers mod 1). The message space is generally chosen so that
the computation emulates binary circuits and homomorphic
addition becomes XOR and multiplication becomes AND.
Since T is not a ring, it supports addition but has no native
multiplication operation. However, multiplications are defined
between GSW ciphertexts and ciphertexts in T . This is used
to perform multiplications and non-linear operations over ci-
phertexts in T during the bootstrapping process, by encrypting
the bootstrapping key as a GSW ciphertext. Multiplications
between ciphertexts in T are realized as one specific type of
such a non-linear transformation applied during bootstrapping.
In this gate-bootstrapped version of the scheme, every non-
linear gate therefore inherently includes bootstrapping.

Chillotti et al. also show how to construct a MUX gate
that selects between two ciphertexts in T dependent on a
GSW ciphertext and introduce efficient designs for Look-Up-
Tables (LUTs). Finally, they show how to use weighted Finite

1107

Automata to emulate binary multiplication [82]. However,
these techniques are not implemented in the TFHE library.

2) BFV: The Brakerski/Fan-Vercauteren scheme is a
second-generation scheme. Fan and Vercauteren [32] ported
a scheme by Brakerski [33] to the ring-LWE domain and
improved its performance. In BFV, the plaintext space Rt is
a ring of polynomials (modulo some irreducible polynomial)
of degree up to n − 1 with coefficients in Zt. Note that
for t = 2, we are in the binary circuit setting. Messages
m ∈ Zt can be encoded into this plaintext space as a constant
polynomial f(x) = m. However, this is inefficient as only
one of n coefficients is utilized. Simply encoding messages
into additional coefficients raises issues when performing
computations: while polynomial additions work coefficient-
wise, multiplications combine different coefficients in un-
desired ways. Instead, one can achieve SIMD-style batch-
ing via the Chinese Remainder Theorem [34]. By choosing
n = Πk

i=0ni , a degree-n polynomial can be reinterpreted as
the multiplication of k lower-degree polynomials. Using this
technique, k messages can be packed into a single plaintext,
where k � 1000 in practice, while maintaining meaningful
semantics. Automorphisms additionally enable homomorphic
rotations of the elements [35].

The ciphertexts, meanwhile, are made up of at elements
from Rq , which has the same structure as Rp, but with a
different coefficient modulus q. Each ciphertexts consists of
at least two elements, i.e., c = [c0, c1]. These polynomials ci
can themselves be interpreted as coefficients of a polynomial

3) CKKS: The Cheon-Kim-Kim-Song scheme [36], also
known as Homomorphic Encryption for Arithmetic of Approx-
imate Numbers (HEAAN), focuses on homomorphic encryp-
tion for approximate numbers. Formally speaking it is not an
FHE scheme since it only fulfills the requirements approxi-
mately, i.e., Dec(Enc(x + y)) ≈ Dec(Enc(x)⊕ Enc(y)), for
some operations + and ⊕. While this slight relaxation has led
to an extremely efficient scheme, some care must be taken
when using approximate FHE schemes [83], [84]. CKKS is
designed primarily for computations with fixed point numbers,
i.e., a number x is represented as m = bx ∗ ∆e for scale
∆, usually a large integer. While any integer-based scheme
can be used for fixed-point computations, they quickly run
into overflow issues. CKKS addresses this by introducing a
homomorphic rounding operation that reduces the scale of a
product back to the original scale ∆.

C(X). Homomorphic addition and multiplication between
ciphertexts correspond to addition and multiplication between
the C(X)’s, respectively. As a consequence, the result of a
multiplication is a quadratic polynomial, i.e., a ciphertext with
three elements c = [c0, c1, c2]. During further multiplications
the noise term would first become squared, then cubed, etc.
growing excessively. Therefore, BFV and similar schemes
introduce a relinearization procedure to transform ciphertexts
back to linear form. We omit a description of bootstrapping
and instead note that BFV is more commonly used in leveled
mode where the parameters are chosen sufficiently large to
complete the computation without bootstrapping.

In CKKS, the logical message space is Cn, i.e., vectors over
the complex numbers, although most applications use only the
real part. The plaintext space R is a ring of polynomials (mod-
ulo some irreducible polynomial) of degree up to n− 1 with
coefficients in Z. Given a scaling factor ∆ ∈ R, we represent
m ∈ R as m′ = b∆me ∈ Z. For brevity, we skip a description
of the encoding of such representations into a plaintext poly-
nomial and simply note that the encoding introduces small
additional approximation errors. During encryption, noise is
intentionally introduced, but this noise overlaps with the least
significant bits of the plaintext. Therefore, the approximation
error and noise are treated as one, and rather than suddenly
losing the message when the noise reaches a threshold, we
gradually lose accuracy.

Like in BFV, ciphertexts in CKKS are arrays of elements
ci ∈ Rq and multiplications require relinearization. However,
different to BFV, the noise e grows quadratically with each
subsequent multiplication. After ` multiplications, it has grown
to e2

`

and a modulus q ≈ e2
`

would be required to decrypt
the resulting ciphertext correctly. Instead, one can scale the
ciphertext down by a factor ω, i.e., go from Rq to Rq/ω .
This is known as rescaling and is similar to the modulus
switching operation in the Brakerski-Gentry-Vaikuntanathan
(BGV) scheme [31] but rescaling also affects the plaintext.
Using rescaling, a modulus of size (` + 1)ωe suffices to
evaluate ` subsequent multiplications. During this operation,
the plaintext encrypted in the ciphertext is also effectively
rescaled to ∆′ = b∆/ωe. Choosing q = Πk

i=0qi where qi are
roughly equally sized primes improves both performance [85]
and, by setting ω = qi, ensures a (nearly) constant scale
throughout the computation.

1108

		2022-08-25T02:17:21-0400
	Preflight Ticket Signature

