
Privacy-Preserving Systems
(a.k.a., Private Systems)

CU Graduate Seminar

Instructor: Roxana Geambasu
1

Secure Multiparty Computation
Course Assistant: Pierre Tholoniat

2

What If No Central Aggregation of Data?

Locations

Messages

Heartbeats

Clicks

Cloud

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

What If No Central Aggregation of Data? (cont.)

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

Clicks

Locations

Messages

Heartbeats

ClicksSecure multiparty computation

What If No Central Aggregation of Data? (cont.)

Case 1: Money Laundering Detection

● Banks want to detect money laundering
using machine learning.

● Criminals conceal illegal activities across
many banks.

● Banks want to jointly compute a model
on customer transaction data, but
cannot share data.

Secure Multiparty Computation (MPC)

● Parties emulate a trusted third party
via cryptography.

● No party learns any party’s input
beyond the final result (trained
model).

● Performance depends on the number
of parties, their computation power,
the threat model and the complexity of
the computation

(Yao, 1982)

Money Laundering Detection with MPC

● Parties: small number of powerful,
interconnected, always-on servers
(one for each bank)

● Computation: train a fraud detection
model

● Practical today for few parties (say up
to 10) and simple computations

[1]

Case 2: Text Autocomplete

● Want to train a text autocomplete model on
many users’ data but don’t want to collect
users’ data in a central location.

● Each user trains a local, partial model, and
then the cloud combines these models into
a global model, which it ships back to the
clients.

Federated Learning

● Your phone personalizes the
model locally, based on your
usage (A)

● Many users' updates are
aggregated (B) to form a
consensus change (C) to the
shared model

● The procedure is repeated as
new data becomes available

Credit: Google AI blog

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Federated Learning with MPC

● Federated learning is a broad term (Kairouz 2021).
○ Can be instantiated in different settings with various combinations of privacy

technologies (MPC, differential privacy, secure enclaves)
○ Also involves machine learning and mobile computing considerations

● Secure multiparty computation (MPC) is usually a central building block for
federated learning deployments, with specialized MPC protocols such as
secure aggregation (Bell 2020)
○ Parties: one powerful central server (untrusted), and many weak clients (of which

a certain fraction is untrusted)
○ Computation: aggregate model updates across devices (only sum, not an

arbitrarily complex computation!)
○ Practical today. E.g., deployed on millions of Android devices (Xu 2023)

Today’s Plan
● We will consider the general MPC setting

○ Multiple parties with private inputs
○ For simplicity, assume parties are honest-but-curious (i.e. follow the protocol)
○ Compute a function on inputs without revealing anything else than the output

● We’ll sketch how some simple MPC protocols work
○ What is the intuition behind the math?
○ How practical are MPC protocols? What operations are expensive, how do they

scale with the number of parties?
○ See the Pragmatic MPC textbook (Evans, 2018) and references for the details

● We’ll look at practical MPC systems and deployments

12

Outline

1. Shamir Secret Sharing

2. Evaluating Arithmetic Circuits with the BGW Protocol

3. Preprocessing for MPC with Beaver Triples

4. Examples of MPC systems

13

Outline

1. Shamir Secret Sharing

2. Evaluating Arithmetic Circuits with the BGW Protocol

3. Preprocessing for MPC with Beaver Triples

4. Examples of MPC systems

14

Shamir Secret Sharing (Shamir, 1979)
Setting:

● n parties, threshold t ≤ n
● A global secret y ∈ K := Fp is shared among parties
● Each party i has a share yi
● Notation for a sharing of y: [y] := (y1, …, yn)

Desired properties:

● Knowing k ≥ t shares is sufficient to reconstruct y
● Knowing k < t shares doesn’t reveal anything about y

15

How can secret-sharing be useful?
Example: secret key recovery

● Split your wallet key into n=5 backups servers
● Reconstruct the key from t servers when needed

○ If t=1, a single corrupted server can steal your key
○ If t=5, a single faulty backup prevents you from recovering your key
○ If t=3, resilient against 2 corrupted colluding servers and 2 failures

We can also use secret-sharing for arbitrary MPC

16

Construction with polynomials
Lagrange interpolation:

● Fact: the only polynomial of degree ≤ t-1 with t roots or more is zero
● Consequence: any polynomial P ∈ Kt-1[X] is uniquely characterized by the

list of coordinate pairs (P(x1), …, P(xt)) for (x1, …, xt) distinct field elements
● Lagrange coefficients:

17

Construction with polynomials
Protocol:

● We (the secret owner/dealer) sample a random polynomial in Kt-1[X] such
that P(0) = y

● Fix public non-zero interpolation points x1, …, xn
● Distribute yi:= P(xi) to party i ∈ {1, …, n}
● Any group of t parties can reconstruct y:

● The Lagrange coefficients λi can be computed in advance, we just need a
linear combination of the shares to reconstruct the secret

18

Outline

1. Shamir Secret Sharing

2. Evaluating Arithmetic Circuits with the BGW Protocol

3. Preprocessing for MPC with Beaver Triples

4. Examples of MPC systems

19

The BGW Protocol (Ben-Or, 1988)
Can we perform operations on a secret-shared input?

● Example application: split a private key into n shares, and sign a document without
ever reconstructing the private key locally

● Any computation in Fp can be represented as an arithmetic circuit (why?)
● We just need to have secret-shared version of the + and x gates

Using multiple inputs:

● In the Shamir setting we had a trusted dealer that splits a secret into shares
● The dealer can be a (semi-honest) party that shares its own input with other parties
● We run multiple Shamir sharings in parallel and combine them with gates

20

Additions are Free
● Two inputs shared with Shamir’s scheme:

○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)

● Output:
○ Desired output: r := p + q = P(0) + Q(0)
○ R := P + Q is a valid Shamir polynomial (degree ≤ t-1 and R(0) = r)
○ Party i’s share is R(xi) = P(xi) + Q(xi)

● Parties can construct their share of the output locally, without any
interaction!

21

Problem with Multiplications
● Two inputs shared with Shamir’s scheme:

○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)
○ Desired output: r := p * q = P(0) * Q(0)

● Problem:
○ R := P * Q satisfies R(0) = r but has degree ≤ 2(t-1), not a valid sharing
○ Since R doesn’t work, can we find another polynomial R’ with R’(0) = r

and degree ≤ t?

22

Degree Reduction Trick
Goal: find a polynomial R’ with R’(0) = r and degree ≤ t-1

● Observation: with Lagrange’s formula, we have
● Each party i can create a new Shamir sharing of R(xi)

○ Choose a fresh degree t-1 polynomial Ri such that Ri(0) = R(xi)
○ Distribute Ri(xj) to party j

● Summing up Ri with public Lagrange coefficients gives us
● R’ meets our goal:

23

Cost of Multiplications
● Re-sharing requires all-to-all communication
● We still have security against t-1 corrupt parties. But we also need 2t-1 ≤ n

to reconstruct R(0), so secure under honest majority.
○ (h := n - (t-1) ≥ n+1 - (n+1)/2, i.e. h > n/2)

● Corrupt parties are still semi-honest here (a malicious party that re-shares
garbage coefficients could completely destroy the output)

24

Outline

1. Shamir Secret Sharing

2. Evaluating Arithmetic Circuits with the BGW Protocol

3. Preprocessing for MPC with Beaver Triples

4. Examples of MPC systems

25

MPC with Preprocessing
● BGW multiplications are costly (in terms of interactions)
● We can save time by computing some things in advance
● MPC with preprocessing:

○ Offline phase: a trusted dealer generates input-independent
cryptographic material

○ Online phase: parties use the material to save some time (less
communication) when evaluating the circuit

● Beaver triples are secret-shared tuples for multiplication

26

Beaver Triples (Beaver, 1991)
Generation:

1. Take a random tuple (a,b,c) in Fp such that c = a*b
2. Split it and distribute shares to the parties: [a], [b], [c]

Multiplication: we have [x], [y] and want [xy]

1. Each party reveals [x] - [a]. d := x - a is now public
2. Each party reveals [y] - [b]. e: y - b is now public
3. Each party computes locally [xy] = de + d[b] + e[a] + [c]

27

Beaver Triples
Security:

● x - a and y - b are one-time pad
encryptions of x and y

Correctness:

 ∑ (de + d[b] + e[a] + [c])

= (x-a)(y-b) + (x-a)b + (y-b)a + c

= xy

28

Beaver Triples in a Circuit
Computational and communication cost:

● Each party just needs to broadcast 2 values ([x] - [a] and [y] - [b])
● In BGW, each party generates a polynomial and sends n values (one for

each other party)
● Triples don’t depend on the input, and can’t be reused, so we need to

prepare enough to evaluate the whole circuit
● There are techniques to generate triples in batches

29

Applicability of Beaver Triples
● Beaver triples work with other types of secret sharing, not just Shamir and

BGW

● Information-theoretic security: no computational assumptions

● The trusted dealer can be emulated by the parties themselves, e.g. with HE
(Smart, 2019)

30

Outline

1. Shamir Secret Sharing

2. Evaluating Arithmetic Circuits with the BGW Protocol

3. Preprocessing for MPC with Beaver Triples

4. Examples of MPC systems

31

Existing Systems and Production Libraries
● Generic MPC:

○ Inpher’s XOR Secret Computing
○ Meta’s Private Computation Framework

● Federated learning:
○ Google’s Tensorflow Federated
○ Flower framework: See demo from their docs

● Secure aggregation for simple statistics:

○ Libprio-rs (we’ll discuss the Prio protocol next week)

32

https://inpher.io/xor-secret-computing/
https://github.com/facebookresearch/fbpcf
https://www.tensorflow.org/federated
https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html
https://github.com/divviup/libprio-rs

Practical Deployments
● State-of-the-art MPC protocols can be practical:

○ Usually with 2 or 3 active parties (e.g., non-colluding cloud providers)
○ But can handle large numbers of passive parties (e.g., browsers) who share

their input once and let the active parties compute the output
○ Primitives tailored for different use cases

● Examples:
○ AES evaluation on a secret-shared secret key (Damgård, 2010)
○ Distributed aggregation for telemetry or contact tracing (Corrigan-Gibbs,

2017)
○ Training ML models on secret-shared data (Mohassel, 2018)

33

Deep Dive: Meta’s MPC Framework
● General purpose library to build MPC systems
● Open-source: https://github.com/facebookresearch/fbpcf
● Architecture from the whitepaper:

34

https://github.com/facebookresearch/fbpcf

Cyptographic Backend and Scheduler
● Boolean circuits instead of arithmetic circuits

○ Inputs are secret-shared bits
○ AND and XOR instead of + and x
○ Easier to manipulate and compile programs

● Cryptographic primitives:
○ GMW secret sharing, a different scheme than BGW tailored for F2 and resilient against up

to n-1 corrupt parties (while BGW needs an honest majority)
○ Preprocessed Beaver triples to speed up AND gates
○ https://github.com/facebookresearch/fbpcf/blob/main/fbpcf/engine/SecretShareEngine.cpp

● Scheduler:
○ Keep track of intermediate results
○ Order gates and execute them
○ Supports multithreading

35

https://github.com/facebookresearch/fbpcf/blob/main/fbpcf/engine/SecretShareEngine.cpp

C++ Types and Operators
● Frontend types: special C++ types for Bit, Int, BitString
● Everything is reduced to bitwise operations (gates)
● Gates are passed to the scheduler
● Example: integer comparison.

https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3f
bbf9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186

36

https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186
https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3fbbf9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186

Example Application
● The millionaire game:

○ Alice and Bob each have one secret input (their wealth)
○ The output of the circuit is one single bit: who is the richest
○ Parties shouldn’t learn anything else than the output

● https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/M
illionaireGame.h

● Deployment: TCP socket communication, parties can run in Docker

37

https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/MillionaireGame.h
https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/MillionaireGame.h

Conclusion
● Secure multiparty computation (MPC) allows parties to jointly compute an

output without revealing their input or intermediary results

● We saw basic MPC techniques (secret sharing, circuit evaluation,
preprocessing) in a simple setting (honest-but-curious adversary and
information-theoretic security)

● Different computation/communication tradeoff than fully homomorphic
encryption: local computations are lightweight, but parties need to
communicate often.

● MPC is already practical and deployed for specific use cases today

38

Going Further
There are many other important concepts we didn’t cover. Some keywords:

● Malicious security: when parties can deviate from the protocol, instead of being simply
honest-but-curious. We can adapt honest-but-curious protocols with MACs, ZK proofs and other
techniques (e.g. see the SPDZ family of protocols and its modern implementations, Keller
2020).

● Oblivious transfer (OT): a useful primitive where a receiver privately picks one of two secrets
offered by a sender.

● Garbled circuits: evaluate circuits in constant number of rounds (BGW’s number of rounds is
proportional to the depth of the circuit).

● FHE and Homomorphic Secret Sharing: other ways of achieving MPC.

● Oblivious RAM (ORAM): hide data access patterns efficiently.

39

References
Yao, Andrew C. "Protocols for secure computations." 23rd annual symposium on foundations of
computer science (sfcs 1982). IEEE, 1982.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021).
Advances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2), 1-210.

Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., & Raykova, M. (2020, October). Secure
single-server aggregation with (poly) logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (pp. 1253-1269).

Xu, Z., Zhang, Y., Andrew, G., Choquette-Choo, C. A., Kairouz, P., McMahan, H. B., ... & Zhang, Y.
(2023). Federated learning of gboard language models with differential privacy. arXiv preprint
arXiv:2305.18465.

40

References
D. Evans, V. Kolesnikov, and M. Rosulek, “A Pragmatic Introduction to Secure Multi-Party
Computation,” SEC, vol. 2, no. 2–3, pp. 70–246, Dec. 2018, doi: 10.1561/3300000019.

“Private Computation Framework 2.0 - Meta Research,” Meta Research.
https://research.facebook.com/publications/private-computation-framework-2-0/ (accessed Mar. 08,
2023).

N. P. Smart and T. Tanguy, “TaaS: Commodity MPC via Triples-as-a-Service,” in Proceedings of the
2019 ACM SIGSAC Conference on Cloud Computing Security Workshop, New York, NY, USA, Nov.
2019, pp. 105–116. doi: 10.1145/3338466.3358918.

M. Keller, “MP-SPDZ: A Versatile Framework for Multi-Party Computation,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, Nov.
2020, pp. 1575–1590. doi: 10.1145/3372297.3417872.

I. Damgård and M. Keller, “Secure Multiparty AES: (Short Paper),” in Financial Cryptography and Data
Security, vol. 6052, R. Sion, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 367–374. doi:
10.1007/978-3-642-14577-3_31.

41

References
P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework for Machine Learning,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, New York, NY, USA, Oct. 2018, pp. 35–52. doi:
10.1145/3243734.3243760.

H. Corrigan-Gibbs and D. Boneh, “Prio: Private, Robust, and Scalable Computation of Aggregate Statistics,” presented at the
14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17), 2017, pp. 259–282. Accessed:
Dec. 15, 2020. [Online]. Available: https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, Nov. 1979, doi: 10.1145/359168.359176.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-cryptographic fault-tolerant distributed
computation,” in Proceedings of the twentieth annual ACM symposium on Theory of computing, New York, NY, USA, Jan.
1988, pp. 1–10. doi: 10.1145/62212.62213.

D. Beaver, “Efficient Multiparty Protocols Using Circuit Randomization,” in Advances in Cryptology — CRYPTO ’91, vol. 576, J.
Feigenbaum, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 420–432. doi: 10.1007/3-540-46766-1_34.

42

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

The End
Secure Multiparty Computation

