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Case 1: Money Laundering Detection

● Banks want to detect money laundering 
using machine learning.

● Criminals conceal illegal activities across 
many banks.

● Banks want to jointly compute a model 
on customer transaction data, but 
cannot share data.



Secure Multiparty Computation (MPC)

● Parties emulate a trusted third party 
via cryptography.

● No party learns any party’s input 
beyond the final result (trained 
model).

● Performance depends on the number 
of parties, their computation power, 
the threat model and the complexity of 
the computation

(Yao, 1982)



Money Laundering Detection with MPC

● Parties: small number of powerful, 
interconnected, always-on servers 
(one for each bank)

● Computation: train a fraud detection 
model

● Practical today for few parties (say up 
to 10) and simple computations

[1]

 



Case 2: Text Autocomplete

● Want to train a text autocomplete model on 
many users’ data but don’t want to collect 
users’ data in a central location.

● Each user trains a local, partial model, and 
then the cloud combines these models into 
a global model, which it ships back to the 
clients.



Federated Learning

● Your phone personalizes the 
model locally, based on your 
usage (A)

● Many users' updates are 
aggregated (B) to form a 
consensus change (C) to the 
shared model

● The procedure is repeated as 
new data becomes available

Credit: Google AI blog

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html


Federated Learning with MPC

● Federated learning is a broad term (Kairouz 2021). 
○ Can be instantiated in different settings with various combinations of privacy 

technologies (MPC, differential privacy, secure enclaves)
○ Also involves machine learning and mobile computing considerations

● Secure multiparty computation (MPC) is usually a central building block for 
federated learning deployments, with specialized MPC protocols such as 
secure aggregation (Bell 2020)
○ Parties: one powerful central server (untrusted), and many weak clients (of which 

a certain fraction is untrusted)
○ Computation: aggregate model updates across devices (only sum, not an 

arbitrarily complex computation!)
○ Practical today. E.g., deployed on millions of Android devices (Xu 2023)



Today’s Plan
● We will consider the general MPC setting

○ Multiple parties with private inputs
○ For simplicity, assume parties are honest-but-curious (i.e. follow the protocol)
○ Compute a function on inputs without revealing anything else than the output

● We’ll sketch how some simple MPC protocols work  
○ What is the intuition behind the math?
○ How practical are MPC protocols? What operations are expensive, how do they 

scale with the number of parties?
○ See the Pragmatic MPC textbook (Evans, 2018) and references for the details

● We’ll look at practical MPC systems and deployments
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Shamir Secret Sharing (Shamir, 1979)
Setting:

● n parties, threshold t ≤ n
● A global secret y ∈ K := Fp is shared among parties
● Each party i has a share yi
● Notation for a sharing of y: [y] := (y1, …, yn)

Desired properties:

● Knowing k ≥ t shares is sufficient to reconstruct y
● Knowing k < t shares doesn’t reveal anything about y
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How can secret-sharing be useful?
Example: secret key recovery

● Split your wallet key into n=5 backups servers
● Reconstruct the key from t servers when needed

○ If t=1, a single corrupted server can steal your key
○ If t=5, a single faulty backup prevents you from recovering your key
○ If t=3, resilient against 2 corrupted colluding servers and 2 failures

We can also use secret-sharing for arbitrary MPC

16



Construction with polynomials
Lagrange interpolation:

● Fact: the only polynomial of degree ≤ t-1 with t roots or more is zero
● Consequence: any polynomial P ∈ Kt-1[X] is uniquely characterized by the 

list of coordinate pairs (P(x1), …, P(xt)) for (x1, …, xt) distinct field elements
● Lagrange coefficients:
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Construction with polynomials
Protocol:

● We (the secret owner/dealer) sample a random polynomial in Kt-1[X] such 
that P(0) = y

● Fix public non-zero interpolation points x1, …, xn
● Distribute yi:= P(xi) to party i ∈ {1, …, n}
● Any group of t parties can reconstruct y: 

● The Lagrange coefficients λi can be computed in advance, we just need a 
linear combination of the shares to reconstruct the secret
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The BGW Protocol (Ben-Or, 1988)
Can we perform operations on a secret-shared input?

● Example application: split a private key into n shares, and sign a document without 
ever reconstructing the private key locally

● Any computation in Fp can be represented as an arithmetic circuit (why?)
● We just need to have secret-shared version of the + and x gates

Using multiple inputs:

● In the Shamir setting we had a trusted dealer that splits a secret into shares
● The dealer can be a (semi-honest) party that shares its own input with other parties
● We run multiple Shamir sharings in parallel and combine them with gates

20



Additions are Free 
● Two inputs shared with Shamir’s scheme:

○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)

● Output:
○ Desired output: r := p + q = P(0) + Q(0)
○ R := P + Q is a valid Shamir polynomial (degree ≤ t-1 and R(0) = r)
○ Party i’s share is R(xi) = P(xi) + Q(xi)

● Parties can construct their share of the output locally, without any 
interaction!
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Problem with Multiplications
● Two inputs shared with Shamir’s scheme:

○ Secret p, polynomial P such that p = P(0), shares P(x1), …, P(xn)
○ Secret q, polynomial Q such that q = Q(0), shares Q(x1), …, Q(xn)
○ Desired output: r := p * q = P(0) * Q(0)

● Problem:
○ R := P * Q satisfies R(0) = r but has degree ≤ 2(t-1), not a valid sharing
○ Since R doesn’t work, can we find another polynomial R’ with R’(0) = r 

and degree ≤ t?

22



Degree Reduction Trick
Goal: find a polynomial R’ with R’(0) = r and degree ≤ t-1

● Observation: with Lagrange’s formula, we have 
● Each party i can create a new Shamir sharing of R(xi)

○ Choose a fresh degree t-1 polynomial Ri such that Ri(0) = R(xi)
○ Distribute Ri(xj) to party j

● Summing up Ri with public Lagrange coefficients gives us 
● R’ meets our goal:
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Cost of Multiplications
● Re-sharing requires all-to-all communication
● We still have security against t-1 corrupt parties. But we also need 2t-1 ≤ n 

to reconstruct R(0), so secure under honest majority. 
○ (h := n - (t-1) ≥ n+1 - (n+1)/2, i.e. h > n/2)

● Corrupt parties are still semi-honest here (a malicious party that re-shares 
garbage coefficients could completely destroy the output)
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MPC with Preprocessing
● BGW multiplications are costly (in terms of interactions)
● We can save time by computing some things in advance
● MPC with preprocessing: 

○ Offline phase: a trusted dealer generates input-independent 
cryptographic material

○ Online phase: parties use the material to save some time (less 
communication) when evaluating the circuit

● Beaver triples are secret-shared tuples for multiplication

26



Beaver Triples (Beaver, 1991)
Generation:

1. Take a random tuple (a,b,c) in Fp such that c = a*b
2. Split it and distribute shares to the parties: [a], [b], [c]

Multiplication: we have [x], [y] and want [xy]

1. Each party reveals [x] - [a]. d := x - a is now public 
2. Each party reveals [y] - [b]. e: y - b is now public
3. Each party computes locally [xy] = de + d[b] + e[a] + [c]

27



Beaver Triples
Security:

● x - a and y - b are one-time pad 
encryptions of x and y

Correctness: 

 ∑ (de + d[b] + e[a] + [c]) 

= (x-a)(y-b) + (x-a)b + (y-b)a + c 

= xy 

28



Beaver Triples in a Circuit
Computational and communication cost:

● Each party just needs to broadcast 2 values ([x] - [a] and [y] - [b])
● In BGW, each party generates a polynomial and sends n values (one for 

each other party)
● Triples don’t depend on the input, and can’t be reused, so we need to 

prepare enough to evaluate the whole circuit
● There are techniques to generate triples in batches
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Applicability of Beaver Triples
● Beaver triples work with other types of secret sharing, not just Shamir and 

BGW

● Information-theoretic security: no computational assumptions

● The trusted dealer can be emulated by the parties themselves, e.g. with HE 
(Smart, 2019)
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Existing Systems and Production Libraries
● Generic MPC:

○ Inpher’s XOR Secret Computing 
○ Meta’s Private Computation Framework

● Federated learning:
○ Google’s Tensorflow Federated
○ Flower framework: See demo from their docs

● Secure aggregation for simple statistics:

○ Libprio-rs (we’ll discuss the Prio protocol next week)

32

https://inpher.io/xor-secret-computing/
https://github.com/facebookresearch/fbpcf
https://www.tensorflow.org/federated
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https://github.com/divviup/libprio-rs


Practical Deployments
● State-of-the-art MPC protocols can be practical:

○ Usually with 2 or 3 active parties (e.g., non-colluding cloud providers)
○ But can handle large numbers of passive parties (e.g., browsers) who share 

their input once and let the active parties compute the output
○ Primitives tailored for different use cases

● Examples:
○ AES evaluation on a secret-shared secret key (Damgård, 2010)
○ Distributed aggregation for telemetry or contact tracing (Corrigan-Gibbs, 

2017)
○ Training ML models on secret-shared data (Mohassel, 2018)
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Deep Dive: Meta’s MPC Framework
● General purpose library to build MPC systems
● Open-source: https://github.com/facebookresearch/fbpcf 
● Architecture from the whitepaper:
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Cyptographic Backend and Scheduler
● Boolean circuits instead of arithmetic circuits

○ Inputs are secret-shared bits
○ AND and XOR instead of + and x
○ Easier to manipulate and compile programs

● Cryptographic primitives:
○ GMW secret sharing, a different scheme than BGW tailored for F2 and resilient against up 

to n-1 corrupt parties (while BGW needs an honest majority)
○ Preprocessed Beaver triples to speed up AND gates
○ https://github.com/facebookresearch/fbpcf/blob/main/fbpcf/engine/SecretShareEngine.cpp 

● Scheduler:
○ Keep track of intermediate results
○ Order gates and execute them
○ Supports multithreading

35
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C++ Types and Operators 
● Frontend types: special C++ types for Bit, Int, BitString
● Everything is reduced to bitwise operations (gates)
● Gates are passed to the scheduler
● Example: integer comparison. 

https://github.com/facebookresearch/fbpcf/blob/b38024cccc79dff74bbce3f
bbf9836caf80a4ce7/fbpcf/frontend/Int_impl.h#L186 

36
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Example Application
● The millionaire game:

○ Alice and Bob each have one secret input (their wealth)
○ The output of the circuit is one single bit: who is the richest
○ Parties shouldn’t learn anything else than the output

● https://github.com/facebookresearch/fbpcf/blob/main/example/millionaire/M
illionaireGame.h 

● Deployment: TCP socket communication, parties can run in Docker

37
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Conclusion
● Secure multiparty computation (MPC) allows parties to jointly compute an 

output without revealing their input or intermediary results

● We saw basic MPC techniques (secret sharing, circuit evaluation, 
preprocessing) in a simple setting (honest-but-curious adversary and 
information-theoretic security)

● Different computation/communication tradeoff than fully homomorphic 
encryption: local computations are lightweight, but parties need to 
communicate often.

● MPC is already practical and deployed for specific use cases today

38



Going Further
There are many other important concepts we didn’t cover. Some keywords:

● Malicious security: when parties can deviate from the protocol, instead of being simply 
honest-but-curious. We can adapt honest-but-curious protocols with MACs, ZK proofs and other 
techniques (e.g. see the SPDZ family of protocols and its modern implementations, Keller 
2020).

● Oblivious transfer (OT): a useful primitive where a receiver privately picks one of two secrets 
offered by a sender. 

● Garbled circuits: evaluate circuits in constant number of rounds (BGW’s number of rounds is 
proportional to the depth of the circuit).

● FHE and Homomorphic Secret Sharing: other ways of achieving MPC.

● Oblivious RAM (ORAM): hide data access patterns efficiently.
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The End
Secure Multiparty Computation


