Privacy-Preserving Systems
(a.k.a., Private Systems)

CU Graduate Seminar

Instructor: Roxana Geambasu

Homomorphic Encryption

Acknowledgement: This lecture was inspired by this 2019 talk by Prof. Raluca Ada Popaj,

http://acmsocc.org/2019/slides/socc19-slides-keynote-popa.pdf

Limitations of Traditional Encryption for
Data Exposure Risks in (ML) Clouds

N
Reminder: Data Risks in ML Ecosystems

Manual design phase

Feature engineering

Data lake _ — _ Data lake
| Data schema | Model design and tralnlng/servmg Evaluation (same as on
Pipeline implementations the left)

| (Manual) labeling |

J_|_,Training pipeline, config. Data logs
(n days)
mﬂn)g phase ;

Data logs
(n days)

' U) _~ Trained
el - — o model
profiles o —x83e |l Trainer | Evaluator » Saved
A i generator g [transforrner models

N
Saved Trained /—\Save q
raine
T \ Asew|ng pipeline, config u model features
N
Saved erving phase
. xample Model y - Online profiles

W: — > Decision
transformer executor evaluator

A
(user_id, _
context) (x, y, action)

LN (y, prediction_id)

) < i X, Y, action
. 5| Streaming (x, y.)

T (action, prediction_id) engine 4

Compute Cloud

Clouds Add Further Risks

Manual Design Phase
_/
ﬁ feature engineering
‘ Data Lake model design + training/serving evaluation Data Lake
pipelines implementations (same as on
(manual) labeling the left)
data logs @training pipeline, config H datalogs | |
l n days] ll n days
Model Training Phase ’
Toor trained
isti del d
~ example statistics example . mo f save
profiles generator generator transformer trainer evaluator ‘ models
serving pipeline, confi
features u 9pp 9 u model features
saved Model Serving Phase T
models \ x y P
) example model . online profiles
foaturizer: =1 transformer executor declsion evaluator
L A
Wase Xt (x,, actionir\i 7//
context) (v, prediction_id) i _
streaming (x, y, action)
(action, prediction_id) engine

1o}

I
Compute Cloud

Clouds Add Further Risks

ﬁ\/ Manual Design Phase
‘ Data Lake model design + training/serving . Data Lake
| pipelines implementations (same as on
(manual) labeling the left)
data logs @training pipeline, config H datalogs | |
l n days l n days
Model Training Phase ’
Toor trained
isti del d
~ example statistics example . mo f save
profiles generator generator transformer trainer evaluator models
e
saved
serving pipeline, config trained saved
model features
saved Model Serving Phase
models Hsek
\ I x model y online profiles
) example _—
foaturizer: =1 transformer executor declsion evaluator
e b
Wase Xt (x,, action}r\i 7//
(y, prediction_id) it

(action, prediction_id)

context)

engine

streaming

(x, y, action)

1o}

Traditional Security’s Main \WWeakness

Compute Cloud

L
-

: <
Manual Design Phase
Data Lake model design + training/serving evaluation Data Lake

pipelines implementations (same as on

(manual) labeling the left)

data logs @training pipeline, config H datalogs | |
l n days ’ | n days

Model Training Phase

Taer trained
example statistics example) model| (* saved
profiles = > = trainer evaluator
generator generator transformer ‘ models

-saved //’ -
f I't serving pipeline, confi ained
eatures u 9 9 f

model

saved Model Serving Phase e
) example model - online profiles
fodturizer transformer executor decision evaluator

————

(x, y, action)

(user_id,
context)

(y, prediction_id)

streaming (x, y, action)
(action, prediction_id) engine

€

Attackers Eventually Break In

==
=
—3
-
.
|
=
=]
[Lo}

.

Data Lake

data logs

l n days
user
profiles

saved
features

;

Compute Cloud

>

saved
models

Manual Design Phase
model design + training/serving svalttion Data Lake
pipelines implementations (same as on
(manual) labeling the left)
@training pipeline, config H data logs e
. 1 || n days
Model Training Phase ’
trained
isti del d
~ example statistics example . mo f save
generator generator transformer elner Svaluator ‘ models
e
serving pipeline, confi trained saved
u 9pp 9 u model features
Model Servmg Phase
X y ; fil
) L example model . online profiles
fodturizer transformer executor declsion evaluator
(user_id, (x, V. acti\on)¥/
context) (y, prediction_id) T]
streaming (x, y, action)
(action, prediction_id) engine

R
Assume the Attacker Will Break In

“In the cloud [...] applications need to protect themselves
instead of relying on firewall-like techniques”

Werner Vogels,
Amazon CTO

Standard Use of Encryption

Standard Use of Encryption

Standard Use of Encryption

Standard Use of Encryption

Standard Use of Encryption

Standard Use of Encryption

Standard Use of Encryption

Need: Encryption With Computation

cloud

i

b

| u

Need: Encryption With Computation

cloud

i

b

Need: Encryption With Computation

13,
(8

cloud

B A

=

N
Advanced Cryptography

 Homomorphic encryption
* Secure enclaves

* Secure multiparty computation
* Related: federated learning
» Together, we discuss these as “private collaborative learning”

* Qur goal: overview these so learners have a springboard
for learning more

20

Limitations of Traditional Encryption for Data Exposure Risks in (ML) Clouds

The End

21

Homomorphic Encryption Overview

N
Computation on Encrypted Data

i s

N
Computation on Encrypted Data

Cﬁm—)

N
Computation on Encrypted Data

a function F Enc(data)

N
Computation on Encrypted Data

a function F Enc(data)

*m Enc(F(data))

26

N
Computation on Encrypted Data

a function F Enc(data)

*m « Enc(F(data)) Enc(F(data))

27

N
Computation on Encrypted Data

a function F Enc(data)

*m « Enc(F(data)) Enc(F(data))

F(data)

28

N
Computation on Encrypted Data

a function F

Enc(data)

2

Enc(F(data))

Enc(F(data))

F(data)

Example: RSA public key encryption, F =*

Enc(x) = x® mod n
Enc(y) = y®* mod n

--- (multiply)
Enc(x)*Enc(y) = (xy)® mod n = Enc(x*y)

l.e., RSA is multiplicatively homomorphic 29

N
Computation on Encrypted Data

a function F

Enc(data)

2

Enc(F(data))

Enc(F(data))

F(data)

Example: Paillier cryptosystem, F = +
Enc(x) = g*r» mod n2
Enc(y) = g¥r mod n2
(multiply)
Enc(x) * Enc(y) = g*+Y(rr’)» mod n2 = Enc(x+y)

l.e., Palillier is additively homomorphic 30

N
Fully Homomorphic Encryption

* Enables general functions on encrypted data
* Despite progress, remains orders of magnitude too slow.

* However, specialized homomorphic encryption schemes,
developed for specific operations, are practical.

* Numerous useful systems have been developed, which
are worth considering to deploy in one’s most
vulnerable/exposed components.

31
[Gentry09]

Homomorphic Encryption Overview

The End

32

Background/Math behind These Schemes

N
Cryptography Basics

» Goal: allow intended recipients of a message to receive

the message securely:
o Confidentiality
o Integrity
o Non-repudiation
« Two types:
o Public-key or Symmetric-key
o Public-key or Asymmetric-key

This and next few slides were inspired by this slide deck. 24

https://www.slideshare.net/abhicno/rsa-cryptosystem-44238879

.
Important terms

. Plaintext -- the message in its original form.

« Ciphertext -- message altered to be unreadable by
anyone except intended recipients.

» Cipher -- The algorithm used to encrypt the message.

« Cryptosystem -- The combination of algorithm, key, and
key management functions used to perform
cryptographic operations.

35

N
Private Key Cryptography

« Asingle key is used for both encryption and decryption.
That's why it's called “symmetric” key as well.

« The sender uses the key to encrypt the plaintext and
the receiver applies the same key to decrypt the
message.

» The biggest difficulty with this approach is thus the
distribution of the key, which generally a trusted
third-party does.

36

®
Step 2: Give key and .
ciphertext to receiver,

Y

(Separately!)
A
’ Step 3: Use key
Step 1: Select key to decrypt
and encrypt. ciphertext.

—

plaintext encryption

ciphertext decryption plaintext

Schematic representation of Private-key cryptography Schematic from here.

https://www.slideshare.net/abhicno/rsa-cryptosystem-44238879

N
Public-Key Cryptography

« Each user has a pair of keys: a public key and a

private key.
« The public key is used for encryption. This is released

In public (usually through PKI).
« The private key is used for decryption. This is known

to the owner only.

38

Public key encryplion uses two keys. A
public key is used to encrypt a message, A
private key i$ used to decrypt the message.

—
1. James sends the
public key to JoBeth. 2. JoBeth uses 4 It the
the public key message s
10 encrypta intercepted by
message, which o 2 ~ Draco, he
she sends back “ cannot decrypt
1o James. the message
GREPE00)1 because he
ET00m doas not have
v "he new ¥ el the private key.
Protuct 18
m.ﬂy-'~ 3. James can
decrypt the
message using

his private key.

Schematic representation of Public-key cryptography schematic from here. g

https://www.slideshare.net/abhicno/rsa-cryptosystem-44238879

N
RSA Cryptosystem

e Most famous public-key algorithm used today is RSA.

o Developed in 1976 by MIT scientists, Ronald Rivest, Adi Shamir,
Leonard Adleman.

e Used in hundreds of software products and can be used for digital
signatures, or encryption of small blocks of data (such as to establish

symmetric session keys).

e Relies on the relative ease of finding large primes and the comparative
difficulty of factoring large integers for its security.

40

Algorithms

Key generation
Encryption
Decryption

41

RSA Key Generathn d(n) = Euler’s totient function (in

this case, because n=pq and p,q
primes, ¢(n) = (p-1)(9-1))

Select p, g pand g both prime

Calculate n=pKy

Select integer d gcd ((n), d) = 1; 1 < d < ((n)
Calculate e e=d" mod (O(n)

Public Key KU = {e, n}

Private Key KR = {d n}

42

N
RSA Encryption, Decryption

Encryption
Plaintext: M < n
Ciphertext: C = M (mod n)
Decryption
Ciphertext: C

Plaintext: M = C9 (mod n)

43

N
Key Generation

Find two large primes, p and q.
Form their product n = pq.
Choose random integer e, which is relatively prime to (p-1)(g-1).
The pair (n,e) is the public key.
Use Extended Euclid’s Algorithm and Euler’s Theorem to calculate
d, which is e’'s modular inverse.:
ed = 1 (mod(p-1)(g-1))
e The pair (n,d) is the private key.
o Like d, factors p,q must be kept secret (they can be destroyed
after d is generated).

44

N
RSA is Multiplicatively Homomorphic

.. (multiply ciphertexts)

Enc(x)*Enc(y) = (xy)® mod n = Enc(x*y) (to get the ciphertext
of the multiplication
of the cleartexts)

RSA is not known to be additively homomorphic.

45

N
Paillier Cryptosystem

« Similar assumptions as RSA, but it is additively

homomorphic.
o And not known to be multiplicatively homomorphic...

. (Paillier is also secure against chosen-plaintext attack,
which RSA on its own is not.)

Next few slides were inspired by: hhttps://www.slideshare.net/DejanRadil/paillier-cryptosystem 46

N
Paillier Key Generation

1. Pick two large prime numbers p and g, randomly and independently. Confirm that ged(pq, (p — 1)(g — 1)) is 1.

If not, start again. [Loop]

2. Compute n = pgq.

3. Define function L(z) = 1.

4. Compute Aaslem(p — 1,9 — 1).

5. Pick a random integer g in the set ZZ;._, (integers between 1 and n?).

6. Calculate the modular multiplicative inverse u = (L(¢® mod n?))"! mod n. If u does not exist, start

again from step 1. [Loop]

. The public key is (n, g). Use this for encryption.
8. The private key is A. Use this for decryption.

\,

47

N
Paillier Encryption, Decryption

~
-

Encryption can work for any m intherange 0 < m < n:

1. Pick a random number 7 in the range 0 < r < n.

n

2. Compute ciphertext ¢ = ¢™ - ¥ mod n?.

Decryption presupposes a ciphertext created by the above encryption process, sothatcisintherange 0 < ¢ < n’:

A

1. Compute the plaintext m = L(¢® mod n*)-ux mod n.

(Reminder: we can always recalculate 2 from A and the public key).

48

N
Paillier is Additively Homomorphic

Enc(x) = g¥r" mod n2

Enc(y) = gV mod n?
___ (multiply the ciphertexts)

Enc(x) * Enc(y) = g**Y(rr’)» mod n2 = Enc(x+ (to get the ciphertext of the addition of
y
the cleartexts)

Paillier is not known to be multiplicatively homomorphic.

49

N
AES Cryptosystem

. Symmetric-key system
. Used to encrypt messages once a session has been established.
. Much faster than public-key encryption!

. Doesn't rely on difficult number-theory problem, but rather on passing the
cleartext through many transformation blocks that no one knows how to
break (yet?).

. Is not homomorphic, but its “deterministic” mode, which is vulnerable to
chosen-plaintext attacks, can support equality comparisons, hence it is
sometimes used in encrypted computation systems (b/c it's a cheap
alternative to other deterministic encryption schemes).

o (and you will use it in HW3)

Next few slides inspired from this slide deck 50

https://www.slideshare.net/atheistprince/aesadvanced-encryption-standard

R
How AES Works

» Repeats 4 main functions to encrypt data.

. Takes 128-bit block of data and a key and gives
ciphertext as output.

« Functions are:

. Sub Bytes
1. Shift Rows
m. Mix Columns

v. Add Key

51

N
How AES Works (cont.)

« The number of rounds performed by the algo depends on

the key size.
Key size (bits) Rounds
128 10
192 12
256 14

. Tradeoff between security and runtime (but in any case,
much faster and memory efficient than RSA for example).

52

_ Encryption Decryption _

128-bit Encrypted
Data Block

Key Expansion

Schematic 128-bit Data Block
of AES
block cipher —

Key Expansion

Add Round Key
Shift Rows

Add Round Key

SubBytes SubBytes
Shift Rows .

(9 rounds) Add Round Key Mix Columns

Shift Rows
SubBytes

SubBytes
Shift Rows

Final Round

Add Round Key

Add Round Key

128-bit Encrypted 128-bit Data Block

Data Block

53

Background/Math behind These Schemes

The End

o4

Example System: Encrypted Database

N
Encrypted Databases

CryptDB (Popa11) was a first DBMS to process SQL
gueries on encrypted data.

trusted, on premise | under attack

Application [*

56
[Popai1]

Encrypted Databases

CryptDB (Popa11) was a first DBMS to process SQL
gueries on encrypted data.

trusted, on premise | under attack

§ -
Application [* g [E-@‘

57
[Popai1]

Encrypted Databases

CryptDB (Popa11) was a first DBMS to process SQL
gueries on encrypted data.

trusted, on premise | under attack

Comice i -
Application g d i [E-‘

58
[Popai1]

Encrypted Databases

CryptDB (Popa11) was a first DBMS to process SQL
gueries on encrypted data.

trusted, on premise | under attack

query | CryptDB <
Application g d | [E-‘

59
[Popai1]

Encrypted Databases

CryptDB (Popa11) was a first DBMS to process SQL
gueries on encrypted data.

Application

trusted, on premise | under attack

CryptDB

query

proxy

rewritten query

60
[Popai1]

Encrypted Databases

CryptDB (Popa11) was a first DBMS to process SQL
gueries on encrypted data.

trusted, on premise | under attack

query | CryptDB rewrltten query

proxy
encryﬁted results \ E

Application

61
[Popai1]

Encrypted Databases

CryptDB (Popa11) was a first DBMS to process SQL
gueries on encrypted data.

trusted, on premise | under attack

query | CryptDB rewrltten query
Application e
) results encryﬁted results \

62
[Popai1]

N
CryptDB in a Nutshell

* Observation: most SQL can be implemented with a few operations
(eg’ +’ =’ >)
* Methods:

« Employs an efficient encryption scheme for each operation: Paillier for +;
DET for =, order-preserving encryption for >, ...

« Maintains multiple ciphertexts of the data, one for each encryption

* Redesigns the query planner to produce encrypted and transformed query
plans, transparently for DBMS and applications

« Evaluation on TPC-C benchmarks shows 27% performance
overhead

63

N
Existing Systems

« Academic

* CryptDB
» Cipherbase

» Autocrypt

* Industry
* Microsoft: AlwaysEncrypted

» Google: EncryptedBigQuery
» Skyhigh Security

64

https://github.com/CryptDB/cryptdb
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper33.pdf
https://autocrypt.org/
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15
https://github.com/google/encrypted-bigquery-client
https://www.skyhighsecurity.com/en-us/index.html

R
Cited References

(Gentry09) Craig Gentry. Fully homomorphic encryption
using ideal lattices. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, 2009.

(Popa11) Raluca Ada Popa, Catherine M. S. Redfield,
Nickolai Zeldovich, and Hari Balakrishnan. CryptDB:
Protecting Confidentiality with Encrypted Query
Processing. In Proceedings of ACM Symposium on
Operating Systems, 2011.

65

Example System: Homomorphic Databases

The End

66

Demo: HE/FHE Iin Practice

L
Concrete

« Rust implementation of TFHE [1]
. FHE based on Learning With Errors (LWE)
hardness

« Boolean and arithmetic operations

o Functions that can be compiled to circuits. >5‘P .
o No arbitrary if/else statements or loops (why?))

« See notebook on Courseworks
o Simple FHE circuits
o Evaluating HE vs FHE runtime
o Lightweight ML model inference on encrypted
data 68

R
Cited References

[1] I. Chillotti, N. Gama, M. Georgieva, and M. |zabachene,
“TFHE: Fast Fully Homomorphic Encryption Over the
Torus,” J Cryptol, vol. 33, no. 1, pp. 34-91, Jan. 2020, doi:
10.1007/s00145-019-09319-x.

69

Demo: HE Libraries

The End

70

Homework 3 Overview

(CA walks through HW3 notebook, posted on
Courseworks)

71

