
Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu

1

Large-Scale Software
Systems Stacks

• We talked a lot about storage in this class, plus a bit about
distributed computation. For storage, we focused on a
particular type of interface (transactional databases).

• But there’s a vast range of infrastructural components
that are needed for building successful distributed
applications. Large companies and open-source
communities have such components available.

• This lecture aims to provide an index of such components.
We won’t give details about how these components are built,
but pointers to where you can find out more.

• We’ll also give pointers to valuable advice on skills and
patterns useful for building large-scale systems.

Lecture Theme

4

Acknowledgements

• Because the course lecture is so broad, there’s a lot to
acknowledge for the content provided here.

• Particularly important for these slides are two sources:

• A 2015 talk by Malte Schwarzkopf on software systems
stacks at large companies [1].

• A couple of talks by Jeff Dean about experience and
advice from building some key infrastructure systems
at Google (original slides [2] and [3]).

5

“What It Takes to Build Google?”

6

7

What happens here?

8

What happens in those 139ms?

Internet
Google
datacenter

Your
computer

Front-end web
server

G+ idx

places
idxweb idx

9

What we’ll chat about

1. Datacenter hardware

2. Cluster failures

3. Scalable & fault tolerant software stacks
a. Google

b. Facebook

c. Open source

10

11

From Meta (as of 2022):
● O(1M) machines in total
● O(10s) regions
● O(1000s) interdependent

services

● “Machine”
○ no chassis
○ DC battery
○ mostly custom-made

● Network
○ ToR switch
○ multi-path core

A video surveying a Google
Datacenter (as of 2020) is here.

https://datacenterfrontier.com/inside-a-google-data-center-2020-version/

12
Source: Jeff Dean
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf, 2007.

(NB: Numbers are from 2007 Google study, but
are most comprehensive in terms of class of

failures. Other papers measure specific types of
failure, such as this for disks and this for DRAM.)

https://research.google.com/archive/disk_failures.pdf
https://research.google/pubs/pub35162/

13

Dealing with Scale and Failures

1. Leverage infrastructure systems that solve portions of
your problem at scale and with fault-tolerance.

2. Follow engineering patterns for how to develop
scalable, fault tolerant systems.

3. Reason about the space of design and try make design
choices based on assessments of tradeoffs, either from
back-of-the-envelope or from basic prototype
evaluations.

Today: We’ll talk about the kinds of infrastructure systems that are
often needed (and available) at companies or in the open-source
community (#1 above).
Refer to these slides [2] by Jeff Dean for DS design patterns and
tradeoff analysis advice (#2 and #3 above). We’ll only include here
one example back-of-the-envelope calculation. Note the final quiz may
include such calculations.

14

(NB: Numbers are outdated, keep searching for latest numbers online, e.g., [4])

Numbers Everyone Should Know

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf

https://colin-scott.github.io/personal_website/research/interactive_latency.html

15

16

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Calculation 1: Thumbnail Page Generation

17

https://tinyurl.com/back-of-the-envelope-activity

Question: How long to generate the image
thumbnail page for an album of 30 pics
(256KB/thumbnail)?

- Consider at least two designs for how the album
app might interact with the file system to retrieve
the thumbnails. Assume local application, no
network/distribution.

- Use “Numbers Everyone Should Know” (previous
slide) to give an order of magnitude estimation of
the runtime under each design.

- In your answer sheet, briefly describe your options,
give your assessment for runtime for each, and
identify whether there is a clear winner?

18

(NB: Numbers are outdated, keep searching for latest numbers online, e.g., [4])

Numbers Everyone Should Know

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf

https://colin-scott.github.io/personal_website/research/interactive_latency.html

19

Calculation 1: Thumbnail Page Generation

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf

(Assumes full parallelism, so multiple disks each with multiple heads. If all in one
disk with (say) 5 heads, latency is more like 110ms.)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Calculation 2: Quicksort 1GB Numbers

20

Question: How long to quicksort 1GB’s
worth of 4-byte numbers?

- Assume all numbers are in RAM.
- Think about how many numbers that would

mean. → 2^28 numbers = n
- Remind yourselves of the algorithm and

think of what the most expensive operations
are likely to be. → 1) branch mispredictions
(due to comparisons); 2) memory accesses

- For each expensive operation:
- Approximate how many such ops on

average.
• 1) # comparisons: n log n =

2^28*28 ~= 2^33. Half mispredict:
2^32 branch mispredictions

• 2) amount of memory accessed:
28 * 1GB = 28 GB RAM accessed

- Use “Numbers Everyone Should Know”
to approximate the total cost of those
ops.

- Then add things up and put your order of
magnitude estimation in your answer sheet.

Mispredictions: 2^32 mispredivtios * 5ns = ~21 seconds
Memory component: 28GB @ 4GB/s ~= 7 seconds

30 seconds for sorting a 1GB-worth of numbers

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Calculation 2: Quicksort 1GB Numbers

21

Question: How long to quicksort 1GB’s
worth of 4-byte numbers?

- Assume all numbers are in RAM.
- Think about how many numbers that would

mean.
- Remind yourselves of the algorithm and

think of what the most expensive operations
are likely to be.

- For each expensive operation:
- Approximate how many such ops on

average.
- Use “Numbers Everyone Should Know”

to approximate the total cost of those
ops.

- Then add things up and put your order of
magnitude estimation in your answer sheet.

22

(NB: Numbers are outdated, keep searching for latest numbers online, e.g., [4])

Numbers Everyone Should Know

Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Calculation 2:
Quicksort 1GB

Numbers

23

Question: How long to quicksort 1 GB
of 4 byte numbers?

- Assume all numbers are in RAM.
- Think about how many numbers that would

mean. → 2^28 numbers
- Remind yourselves of the algorithm and think

of what the most expensive operations are
likely to be. → comparisons, memory reads

- For each heavy operation:
- Approximate how many such ops on

average. → comparisons: log(2^28)
passes over 2^28 numbers, or 2^33
comparisons. Half mispredict, so 2^32
mispredictions.
 → amount of memory read:
2^30 bytes for 28 passes.

- Use “Numbers Everyone Should Know” to
approximate the total cost of those ops.

- Then add things up and put your order of
magnitude estimation in your answer sheet.

Mispredictions = 2^32 misp * 5 ns
=~ 21 sec

Memory: 28 GB @ 4GB/s =~ 7 sec

24Source: Jeff Dean, https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf

Calculation 2: Quicksort 1GB Numbers

25

Software Systems Stack

Machine MachineMachine

Linux kernel
(customized)

Linux kernel
(customized)

Linux kernel
(customized)

Transparent distributed systems

C
on

ta
in

er
s

C
on

ta
in

er
s

We’ll look at what goes here!

26

The Google Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015 (to appear).

27

Example Infrastructure System:
Kubernetes Cluster Orchestrator

28

Kubernetes (K8s)
https://kubernetes.io/

● Open-source system for automating
deployment, scaling, and management
of containerized applications.

● Groups containers that make up an
application into logical units for easy
management, scaling, and discovery.

● Builds upon 15 years of experience of
running production workloads at
Google, combined with best-of-breed
ideas and practices from the
community.

https://kubernetes.io/
http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444

29

Background: Containers

30

Background: Containers Google’s been
running this

way for years!
>2B containers

launch per
week (2019

source)!

Gmail,
Search,
Maps,
Docs,

…

https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

31

Key concepts

● K8s runs applications in a
cluster of nodes. cluster

node

node

node

master

32

Key concepts

● K8s runs applications in a
cluster of nodes.

● Nodes abstract out
computing resources: can
be physical machines or
VMs; they are registered
with specified amts of
CPU, RAM, GPU, …

cluster
CPU,
RAM

CPU,
RAM

CPU,
RAM

node

node

node

master

CPU,
RAM

.ya
ml

node spec
(admin)

CPU,
RAM

CPU,
RAM

33

Key concepts

● K8s runs applications in a
cluster of nodes.

● Nodes abstract out
computing resources: can
be physical machines or
VMs; they are registered
with specified amts of
CPU, RAM, GPU, …

● Applications are called
pods and consist of one or
more containers, which
the developer specifies in
a .yaml file to k8s master.

master

node

node

node

cluster

(developer)

CPU,
RAM

CPU,
RAM

CPU,
RAM.ya

ml

node spec
(admin)

pod
template

.ya
ml

34

Key concepts

● K8s runs applications in a
cluster of nodes.

● Nodes abstract out
computing resources: can
be physical machines or
VMs; they are registered
with specified amts of
CPU, RAM, GPU, …

● Applications are called
pods and consist of one or
more containers, which
the developer specifies in
a .yaml file to k8s master.

master

node

node

node

cluster.ya
ml

pod
template

(developer)

CPU,
RAM

CPU,
RAM

CPU,
RAM.ya

ml

node spec
(admin)

defines desired
exec conditions
(e.g., hw needs,
replication, …)

35

K8s main functions

● Based on pod
templates, selects
suitable nodes and
instantiates pods on
them for execution.

● Continuously does that
to ensure that, despite
failures, the desired
execution conditions for
all pods are met.

master

node

node

node

cluster.ya
ml

pod
template

(developer)

CPU,
RAM

CPU,
RAM

CPU,
RAM.ya

ml

node spec
(admin)

defines desired
exec conditions
(e.g., hw needs,
replication, …)

36

Many more K8s functions

● Automated rollouts and rollbacks

● Service discovery and load balancing

● Storage orchestration

● Self-healing

● Automatic scheduling (bin packing)

● Secret and configuration management

● Batch execution

● Horizontal auto-scaling

● Designed for extensibility

(from https://kubernetes.io/)

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/#how-a-replicaset-works
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/

37

Many more K8s functions

● Automated rollouts and rollbacks

● Service discovery and load balancing

● Storage orchestration

● Self-healing

● Automatic scheduling (bin packing)

● Secret and configuration management

● Batch execution

● Horizontal auto-scaling

● Designed for extensibility

(from https://kubernetes.io/)

EVEN MORE
functions have
been built outside
of K8s, through its
extension by third
parties,
demonstrating the
value of extensible
design for infra
systems!

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/#how-a-replicaset-works
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/

38

K8s outline

● Examples
○ Hello World
○ Busybox
○ Nginx

● System architecture (how it works)

● Extensibility
○ Argo workflows
○ Kubeflow pipelines
○ Ray on Kubernetes

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

39

Example: Hello World

Slide credit

https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

40

Example: Hello World (cont.)

Slide credit

https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

41

Example: Hello World (cont.)

Slide credit

https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

42

Example: Hello World (cont.)

After a while…

Slide credit

https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

43

Example: Hello World (cont.)

After a while…

Slide credit

https://www.slideshare.net/MeganOKeefe1/kubernetes-a-short-introduction-2019

44

K8s outline

● Examples
○ Hello World
○ Busybox (from doc)
○ Nginx (from doc)

● System architecture (how it works)

● Extensibility
○ Argo workflows
○ Kubeflow pipelines
○ Ray on Kubernetes

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

45

System architecture

Functionality detailed in: docs. RG describes the core
aspects of the design.

https://kubernetes.io/docs/concepts/overview/components/

46

K8s outline

● Examples
○ Hello World
○ Busybox (from doc)
○ Nginx (from doc)

● System architecture (how it works)

● Extensibility (from docs)
○ Argo workflows: overview, steps example, artifact

passing example, dag example
○ Kubeflow pipelines: example
○ Ray on Kubernetes: docs

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://argoproj.github.io/argo-workflows/architecture/#argo-workflow-overview
https://github.com/argoproj/argo-workflows/blob/main/examples/hello-world.yaml
https://github.com/argoproj/argo-workflows/blob/main/examples/artifact-passing.yaml
https://github.com/argoproj/argo-workflows/blob/main/examples/artifact-passing.yaml
https://github.com/argoproj/argo-workflows/blob/main/examples/dag-diamond.yaml
https://v0-7.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://docs.ray.io/en/latest/cluster/kubernetes/index.html

47

THE FOLLOWING SLIDES IN THIS
PRESENTATION ARE NOT SUBJECT
FOR THE EXAM.

48

The Google Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015 (to appear).

49

GFS/Colossus

● Bulk data block storage system
○ Optimized for large files (GB-size)
○ Supports small files, but not common case
○ Read, write, record-append modes
○ Record appends are the only one that gives clean

semantics: atomic append at least once.

● Colossus = GFSv2, adds some improvements
○ e.g., Reed-Solomon-based erasure coding
○ better support for latency-sensitive applications
○ sharded meta-data layer, rather than single master

50

GFS/Colossus: architecture

51

Read Protocol

52

Read Protocol

53

Write Protocol

54

Write Protocol

Primary enforces one order across all writes to a file.
Thus, block writes are consistent but undefined in GFS.

55

Record Append Protocol

• The client specifies only the data, not the file offset
– File offset is chosen by the primary
– Why do they have this?

56

Record Append Protocol

• The client specifies only the data, not the file offset
– File offset is chosen by the primary
– Why do they have this?

• To provide meaningful semantic: at least once atomically
– Because FS is not constrained Re: where to place data, it can

get atomicity without sacrificing concurrency

• Rough mechanism:
– If record fits in chunk, primary chooses the offset and

communicates it to all replicas offset is arbitrary
– If record doesn’t fit in chunk, the chunk is padded and client

gets failure file may have blank spaces
– If a record append fails at any replica, the client retries the

operation file may contain record duplicates

57

Detailed algo
Application originates record append request.

2. GFS client translates request and sends it to master.

3. Master responds with chunk handle and (primary +
secondary) replica locations.

4. Client pushes write data to all locations.

5. Primary checks if record fits in specified chunk.

6. If record does not fit, then:
• The primary pads the chunk, tells secondaries to do the same, and

informs the client.
• Client then retries the append with the next chunk.

7. If record fits, then the primary:
• appends the record at some offset in chunk,
• tells secondaries to do the same (specifies offset),
• receives responses from secondaries,
• and sends final response to the client.

58

Implications of weak semantics

• Relying on appends rather on overwrites

• Writing self-validating records
– Checksums to detect and remove padding

• Self-identifying records
– Unique Identifiers to identify and discard duplicates

• Hence, applications need to adapt to GFS and be
aware of its inconsistent semantics

● BUT: You can implement a (transaction) log replication
protocol on it, so it’s a useful building block toward a
stronger-semantic system.

59

The Google Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

http://malteschwarzkopf.de/research/assets/google-stack.pdf

60

Chubby (2004)

• Used by many services at Google (Colossus, Bigtable)
• Open-source version is called Zookeeper, also used as

building block in many systems

61

62

63

64

Interface

● Supports a hierarchical namespace for lock
files.
○ /ls/foo/OurPrimaryServer.lck

■ First component (ls): lock service (common to all names)
■ Second component (foo): the chubby cell (used in DNS lookup to

find the Chubby master)
■ The rest: lock file name inside the cell

● Supports:
○ Atomic create, delete, atomic read of full contents, atomic write of full

contents, etc.
○ Reader and writer locks
○ Clients can subscribe to events (modifications of Chubby

files/directories)

65

66

67

The Google Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

http://malteschwarzkopf.de/research/assets/google-stack.pdf

68

BigTable (2006)

69

Key Ideas

• Distributed tablets hold shards of the map
• Reads & writes within a row are transactional

– Independently of the number of columns touched
– But: no cross-row transactions possible
– Turns out users find this hard to deal with

• Example of good principles for DS design:
• stateless design (stores all state in Colossus, Chubby)
• layered design (relies on other services and structures)
• recursive design (tablet server locations are stored in

Bigtable itself)

70

71

72

73

74

Chubby & Colossus State

Chubby state:
 /ls/bt/master-server
 /ls/bt/live-tablet-servers/
 /ID1
 /ID2
 …
 /ls/bt/first-metadata-server

Colossus state:
 /fs/bt/tabletID1/
 /log
 /SS1
 /SS2
 …
 /fs/bt/tabletID2/
 …

Write on whiteboard

75

76

77

78

79

80

81

Tablet storage and R/W operation

82

Read/Write Operations

83

The Google Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge.

84

Spanner (2012)
• BigTable insufficient for some consistency needs
• Often have transactions across >1 data centres

– May buy app on Play Store while travelling in the U.S.
– Hit U.S. server, but customer billing data is in U.K.
– Or may need to update several replicas for fault tolerance

• Wide-area consistency is hard
– due to long delays and clock skew
– no global, universal notion of time
– NTP not accurate enough, PTP doesn’t work (jittery links)

85

Spanner (2012)
• Spanner offers transactional consistency: full RDBMS

power, ACID properties, at global scale!

• Secret sauce: hardware-assisted clock sync
– Using GPS and atomic clocks in data centres

• Use global timestamps and Paxos to reach consensus
– Still have a period of uncertainty for write TX: wait it out!
– Each timestamp is an interval:

Definitely in
the future

tt.latest

Definitely in
the past

tt.earliest

tabs

86

The Google Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

http://malteschwarzkopf.de/research/assets/google-stack.pdf

87

MapReduce (2004)
• Parallel programming framework for scale

– Run a program on 100’s to 10,000’s machines

• Framework takes care of:
– Parallelization, distribution, load-balancing, scaling up

(or down) & fault-tolerance

• Accessible: programmer provides two methods ;-)
– map(key, value) → list of <key’, value’> pairs
– reduce(key’, value’) → result
– Inspired by functional programming

88

MapReduce
Input

Map

Reduce

Output

Shuffle

X: 5 X: 3 Y: 1 Y: 7

Y: 8X: 8

Results: X: 8, Y: 8

Perform Map() query against local data
matching input specification

Aggregate gathered results for each
intermediate key using Reduce()

End user can query results via
distributed key/value store

Slide originally due to S. Hand’s distributed systems lecture course at Cambridge:
http://www.cl.cam.ac.uk/teaching/1112/ConcDisSys/DistributedSystems-1B-H4.pdf

89

MapReduce: Pros & Cons
• Extremely simple, and:

– Can auto-parallelize (since operations on every
element in input are independent)

– Can auto-distribute (since rely on underlying
Colossus/BigTable distributed storage)

– Gets fault-tolerance (since tasks are idempotent, i.e.
can just re-execute if a machine crashes)

• Doesn’t really use any sophisticated distributed
systems algorithms (except storage replication)

• However, not a panacea:
– Limited to batch jobs, and computations which are

expressible as a map() followed by a reduce()

90

The Google Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

http://malteschwarzkopf.de/research/assets/google-stack.pdf

91

Dremel (2010)

● Column-oriented store
○ For quick, interactive queries

...

Row-oriented storage

Column-oriented storage

92

Dremel (2010)

● Stores protocol buffers
○ Google’s universal serialization format
○ Nested messages → nested columns
○ Repeated fields → repeated records

● Efficient encoding
○ Many sparse records: don’t store NULL fields

● Record re-assembly
○ Need to put results back together into records
○ Use a Finite State Machine (FSM) defined by

protocol buffer structure

93

The Google Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015 (to appear).

Details & Bibliography: http://malteschwarzkopf.de/research/assets/google-stack.pdf

http://malteschwarzkopf.de/research/assets/google-stack.pdf

94

Borg

● Cluster manager and scheduler
○ Tracks machine and task liveness
○ Decides where to run what

● Consolidates workloads onto machines
○ Efficiency gain, cost savings
○ Need fewer clusters

○ Watch Borg EuroSys’14 talk by John Wilkes:
https://www.youtube.com/watch?v=7MwxA4Fj2l
4

https://www.youtube.com/watch?v=7MwxA4Fj2l4
https://www.youtube.com/watch?v=7MwxA4Fj2l4

95

BorgMaster

Borg

BorgMasterBorgMaster

Link shard

Borglet Borglet Borglet

Paxos-replicated
persistent store

Scheduler

Figure reproduced after A. Verma et al., “Large-scale cluster management at
Google with Borg”, Proceedings of EuroSys 2015.

96

Borg: workloads

Jobs/tasks: counts
CPU/RAM: resource seconds [i.e. resource * job runtime in sec.]

Cluster A
Medium size
Medium utilization

Cluster B
Large size
Medium utilization

Cluster C
Medium (12k mach.)
High utilization
Public trace

Figure from M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large
compute clusters”, Proceedings of EuroSys 2013.

97

Borg: workloads
Fr

ac
tio

n
of

 jo
bs

 ru
nn

in
g

fo
r l

es
s

th
an

 X

Figure from M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large
compute clusters”, Proceedings of EuroSys 2013.

Service jobs run for much longer than batch jobs:
long-term user-facing services vs. one-off analytics.

98

Borg: workloads
Fr

ac
tio

n
of

 in
te

r-
ar

riv
al

 g
ap

s
le

ss
 th

an
 X

Figure from M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large
compute clusters”, Proceedings of EuroSys 2013.

Batch jobs arrive more frequently than service jobs:
more numerous, shorter duration, fail more.

99

Borg: workloads

Batch jobs have a longer-tailed CPI distribution:
lower scheduling priority in kernel scheduler.

Figures from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

100

Borg: workloads

Service workloads access memory more frequently:
larger working sets, less I/O.

Figures from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

101

The facebook Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

Details & Bibliography: http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

102

The facebook Stack

GFS
BigTable

MapReduce

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

Details & Bibliography: http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

103

The facebook Stack

Figure from M. Schwarzkopf, “Operating system support for warehouse-scale
computing”, PhD thesis, University of Cambridge, 2015.

Details & Bibliography: http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

http://malteschwarzkopf.de/research/assets/facebook-stack.pdf

104

Haystack & f4

● Blob stores, hold photos, videos
○ not: status updates, messages, like counts

● Items have a level of hotness
○ How many users are currently accessing this?
○ Baseline “cold” storage: MySQL

● Want to cache close to users
○ Reduces network traffic
○ Reduces latency
○ But cache capacity is limited!
○ Replicate for performance, not resilience

105

What about
other companies’ stacks?

106

How about other companies?

● Very similar stacks.
○ Microsoft, Yahoo, Twitter all similar in principle.

● Typical set-up:
○ Front-end serving systems and fast back-ends.
○ Batch data processing systems.
○ Multi-tier structured/unstructured storage hierarchy.
○ Coordination system and cluster scheduler.

● Minor differences owed to business focus
○ e.g., Amazon focused on inventory/shopping cart.

107

Open source software

Lots of open-source implementations!
● MapReduce → Hadoop, Spark, Metis
● GFS → HDFS
● BigTable → HBase, Cassandra
● Borg → Mesos, Firmament
● Chubby → Zookeeper

But also some releases from companies…
● Presto (Facebook)
● Kubernetes (Google Borg)

https://hadoop.apache.org/
http://spark.apache.org/
https://github.com/ydmao/Metis
http://hbase.apache.org/
http://cassandra.apache.org/
http://mesos.apache.org/
https://github.com/ms705/firmament
https://prestodb.io/
http://kubernetes.io/

108

The Spark Stack

109

Newer Stacks

● Lots of new support for machine learning
○ Google: Tensorflow, Tensorflow Serving, Tensorflow

Extended (TFX)
○ Uber: Michelangelo
○ Spark/Berkeley Data Stack (BDAS): MLBase, MLlib,

Clipper

110

References

[1] Malte Schwartzkopf. “What does it taketo make Googlework at
scale?” 2015.
https://docs.google.com/presentation/d/1OvJStE8aohGeI3y5BcY
X8bBHwoHYCPu99A3KTTZElr0/edit#slide=id.p.

[2] Jeff Dean. “Software Engineering Advice from Building
Large-Scale Distributed Systems,” 2007.
https://static.googleusercontent.com/media/research.google.co
m/en//people/jeff/stanford-295-talk.pdf.

[3] Jeff Dean. “Building Software Systems at Google and Lessons
Learned,” 2010.
https://static.googleusercontent.com/media/research.google.co
m/en//people/jeff/Stanford-DL-Nov-2010.pdf.

[4] Colin Scott. “Latency Numbers Every Programmer Should
Know.”
https://colin-scott.github.io/personal_website/research/interac
tive_latency.html.

