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Spanner
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Context
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• We learned about several key mechanisms and protocols for 
achieving scalability and fault tolerance in a strong-semantic, 
transactional database.
– Two-phase locking – what’s this for?
– Write-ahead logging – what’s this for?
– Two-phase commit – what’s this for?
– Paxos – what’s this for?
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Context

• We learned about several key mechanisms and protocols for 
achieving scalability and fault tolerance in a strong-semantic, 
transactional database.
– Two-phase locking – for isolation
– Write-ahead logging – for atomicity in single-node DB
– Two-phase commit – for atomicity in sharded DB for scalability
– Paxos – for consistent replication for fault tolerance

• Today we look at the design and implementation of Spanner, 
Google’s scalable and fault-tolerant ACID database, which 
combines all these building blocks (and more).
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Outline

• Overview and architecture

• TrueTime

• Using TrueTime for efficient linearizable transactions

• Then, YOU will read/view Spanner paper/talk 
https://www.usenix.org/node/170855.
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Overview

• Relational API
• ACID transactions
• Geographically replicated
• Sharded by rows

6

Table

…
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Overview

• Relational API
• ACID transactions
• Geographically replicated
• Sharded by rows

7

Tablet 1

Tablet 2

Tablet n
(dynamic #)

Table

…
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Architecture

8

Replica group 
for Tablet i

Replica group 
for Tablet j

Replica group 
for Tablet k

…Leader Leader Leader

2PL, WAL 2PL, WAL 2PL, WAL

Paxos WAL repl. Paxos WAL repl. Paxos WAL repl.

geo-distributed tablet servers
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Architecture

9

2PC

Replica group 
for Tablet i

Replica group 
for Tablet j

Replica group 
for Tablet k

…
2PC

Transaction:
Begin(); update row1; update row2; update row3; Commit() 

Paxos WAL repl. Paxos WAL repl. Paxos WAL repl.
Leader Leader

2PL, WAL2PL, WAL

geo-distributed tablet servers

2PL, WAL

Leader
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Architecture

10

2PC

Replica group 
for Tablet i

Replica group 
for Tablet j

Replica group 
for Tablet k

…
2PC

Transaction:
Begin(); update row1; update row2; update row3; Commit() 

Paxos WAL repl. Paxos WAL repl. Paxos WAL repl.
Leader Leader, TC Leader

2PL, WAL 2PL, WAL2PL, WAL

geo-distributed tablet servers
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Properties

• Semantics?
• Performance?
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Semantics/Performance
• Spanner provides atomic, serializable transactions that can be 

performed at scale and with geographic fault tolerance.

• Performance: 2PC, especially across geographically replicated 
groups, is expensive!

• “[S]ome authors have claimed that two-phase commit is too 
expensive to support, because of the performance or availability 
problems that it brings. We believe it is better to have application 
programmers deal with performance problems due to overuse of 
transactions as bottlenecks arise, rather than always coding 
around the lack of transactions.” -- Spanner authors

12



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

More on Performance
• Consider what happens when 

you do 2PL + 2PC + Paxos 
WAL replication across 
geographies.

• What locks must be taken 
to give illusion of serial 
execution?

• How long do they need to 
be retained?

• How does that impact 
performance esp. if Tx 
2PC on Paxos?

  “000”

Tx2: scan
       query

“999”

Tx1: point write query
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More on Performance

• Need to take r/w locks for 
all accessed (read/written) 
rows.

• Locks must be held until 
the end of the transactions.

• Scan queries, which 
interact with lots of tablet 
servers, block other Tx’s 
from executing.

  “000”

Tx1: point write query Tx2: scan
       query

“999”
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More on Performance

(continued)
• Add to that that 2PC may 

be involved in some 
expensive transactions.

• Plus all the cross-geo 
Paxos to make sure any 
updates are replicated.

• This interaction across 
transactions is what’s 
expensive!

  “000”

Tx2: scan
       query

“999”

Tx1: point write query
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What Can We Do?
• Option 1:  Take fewer locks or hold them for less time.  This would 

weaken the semantic (won’t be equivalent to serial execution).
• But “[w]e believe it is better to have application programmers deal 

with performance problems due to overuse of transactions as 
bottlenecks arise, rather than always coding around the lack of 
transactions.” – Spanner authors

• Option 2:  Distinguish two types of queries -- (1) point r/w queries and       
(2) r/o scans -- and treat them differently:

• Do 2PL for point queries.
• Do lockless concurrency control for r/o scans.
• Preserves semantics and reduces performance interference.
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Lockless Concurrency Control
• Multi-versioned concurrency control (MVCC) is a popular lockless 

concurrency control mechanism, which is used in Spanner.

• Each row in the table is versioned.  Any r/w transaction creates a new 
version of the rows it changes.
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Lockless Concurrency Control
• Multi-versioned concurrency control (MVCC) is a popular lockless 

concurrency control mechanism, which is used in Spanner.

• Each row in the table is versioned.  Any r/w transaction creates a new 
version of the rows it changes.     

  

  

  

t1

t3
t2• IF you had a global notion of time, then 

you could timestamp the table version.
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• Multi-versioned concurrency control (MVCC) is a popular lockless 
concurrency control mechanism, which is used in Spanner.

• Each row in the table is versioned.  Any r/w transaction creates a new 
version of the rows it changes.

Lockless Concurrency Control

• IF you had a global notion of time, then 
you could timestamp the table version.

  

  

  

t1

t3
t2t

• Then, when doing a r/o scan, you could:
• Get a timestamp for that transaction: t.
• Read the values of each row you’re interested in at the time t.
• IF all nodes agreed on the notion of time, you get serializability.
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What Global Time?

• Option 1: logical clocks.  There are MVCC protocols based 
on that and they would give you serializability.

• But logical clocks have some limitations, including that     they 
only capture internal causality, not external.

• What problems could arise?
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Example

• A writes a post (Ta).
• A calls B to tell them.
• B writes a post with their opinion 

about A’s post (Tb).
• Friend C does a r/o scan of all 

posts from their friends (Tc).
• C should not see B’s post without 

seeing A’s, because Ta 
committed before Tb started, and 
hence Tb could have been 
influenced by Ta (directly or 
indirectly, internally or externally).
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Example

22

Replica group 
for Tablet i

Paxos
Leader

Replica group 
for Tablet j

Paxos
Leader

Ta: W(a, “post_a”)  Tb: W(b, “post_b”) 

Tc: R(a), R(b) 

• A writes a post (Ta).
• A calls B to tell them.
• B writes a post with their opinion 

about A’s post (Tb).
• Friend C does a r/o scan of all 

posts from their friends (Tc).
• C should not see B’s post without 

seeing A’s, because Ta 
committed before Tb started, and 
hence Tb could have been 
influenced by Ta (directly or 
indirectly, internally or externally).
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Example

23

Replica group 
for Tablet i

Paxos
Leader

Replica group 
for Tablet j

Paxos
Leader

Ta: W(a, “post_a”)  Tb: W(b, “post_b”) 

Tc: R(a), R(b) 

• I.e., the only possibilities for 
Tc are to read a, b must be:
– ”post_a”, “post_b”
– “pre_post_a”, “pre_post_b”
– “post_a”, “pre_post_b”

• NOT:
– “pre_post_a”, “post_b”
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Example
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Replica group 
for Tablet i

Paxos
Leader

Replica group 
for Tablet j

Paxos
Leader

Ta: W(a, “post_a”)  Tb: W(b, “post_b”) 

Tc: R(a), R(b) 

• I.e., the only possibilities for 
Tc are to read a, b must be:
– ”post_a”, “post_b”
– “pre_post_a”, “pre_post_b”
– “post_a”, “pre_post_b”

• NOT:
– “pre_post_a”, “post_b”

That is what Spanner ensures, and the property is called 
linearizability (stronger than serializability).
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How about Physical Clocks?

• Option 2: make physical time work!
• Google chose this option, with TrueTime, their strong-semantic time 

service.
• With this notion of time, you can actually get linearizable 

consistency and serializable isolation.

25
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TrueTime

• Highly available, distributed clock that is provided to applications 
on all Google servers.

• Enables applications to generate monotonically increasing 
timestamps across all servers.

• An application can compute a timestamp T that is guaranteed to 
be greater than any timestamp T' if T' finished being generated 
before T started being generated.  This guarantee holds even if 
T, T’ are computed on different machines.

26
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TrueTime Architecture

• In each data center, they have a set of expensive, but very 
accurate, atomic clocks.  They use these as reference clocks.

• On each machine, they have a regular clock (e.g., quartz), 
which is inexpensive but inexact.  The machine runs a time 
daemon that selects multiple reference clocks from multiple 
data centers and performs a synchronization protocol with 
them.  The protocol bounds the error very precisely -- up to a 
few milliseconds in general (under reasonable assumptions).

• Between synchronizations, the time daemon will accumulate 
error: about 200usec/second is applied, which is >> than the 
clock drift on their quartz clocks.

27
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TrueTime Interface

tt.latest – tt.earliest = epsilon
– Epsilon is called the instantaneous uncertainty bound.
– In practice, epsilon saw-tooths between 1ms and 6ms.

28

epsilon

time

1ms

6ms

sync sync sync sync

typedef struct TT_interval {
    struct timeval earliest;
    struct timeval latest;
} TT_interval;
TT_interval *TT_now(TT_interval *tt);
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Serializable Transactions in Spanner
• R/W transactions are executed with 2PL (+2PC+Paxos) and fork a new 

version of each modified row (copy-on-write style).

• All rows modified by a R/W transaction are tagged with a TrueTime 
timestamp associated with that transaction.

• R/O scan transactions are executed without                                                      
locking but with isolation by reading a                                                    
consistent version of the rows at a TrueTime                                          
timestamp associated with the transaction.

• Question: How to associate a timestamp to r/w and r/o transactions to ensure 
serializability?  (i) What timestamp to select  (ii) When to select it?

  

  

  

t1

t3
t2t
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Example
• RW T1: ts = 127, updates row1, row2, row3

• RW T2: ts = 129, updates row1, row3, row4

• RO T3: ts = ?

• Row1: 123, 127, 129

• Row2: 123, 127

• Row3: 123, 127, 129

• Row4: 109, 129
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Example
• RW T1: ts = 127, updates row1, row2, row3

• RW T2: ts = 129, updates row1, row3, row4

• RO T3: ts = (say) 130

• Row1: 123, 127, 129  |

• Row2: 123, 127 |

• Row3: 123, 127, 129 |

• Row4: 109, 129 |
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Example
• RW T1: ts = 127, updates row1, row2, row3

• RW T2: ts = 129, updates row1, row3, row4

• RO T3: ts = (say) 128

• Row1: 123, 127, | 129

• Row2: 123, 127 |

• Row3: 123, 127 |, 129 

• Row4: 109 |, 129
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Example
• RW T1: ts = 127, updates row1, row2, row3

• RW T2: ts = 129, updates row1, row3, row4

• RO T3: ts = (say) 125

• Row1: 123 | , 127, 129

• Row2: 123 |, 127

• Row3: 123 |, 127, 129 

• Row4: 109 |, 129
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What Timestamp to Select?

• For a r/o transaction Tr to execute 
isolated from any ongoing r/w 
transaction Tw, then Tr’s and Tw’s 
timestamps must meet two conditions:
1. If Tr reads any effect of Tw, then 

Tr’s timestamp > Tw’s timestamp. 
2. If Tr doesn’t read some effect of 

Tw, then Tr’s timestamp < Tw’s 
timestamp.

Key idea:
    ts = TT_now().latest;
    waitUntil(TT_now().earliest > ts);
    // Then perform transaction using 
    // ts as its assigned timestamp.

• Serializability for r/w transactions is ensured through 2PL.  The question is 
how to ensure it for r/o transactions, which are lockless.
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When to Select a Timestamp?

R/O transaction:

tr = TT_now().latest

read latest version <= tr

TT_now().earliest > tr

all locks 
acquired

first lock 
released

R/W transaction:

tw = TT_now().latest TT_now().earliest > tw

versions created by 
writes in this TX are 

stamped with tw
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With Multiple Shard Servers
• R/O transactions:

• Client selects the timestamp ts and shard servers may have to wait    
until their TT_now().earliest > ts before they give out a value.

• R/W transactions:

• TC gathers timestamps from Prepare responses from participants  
(which are Paxos leaders, remember).

• TC selects ts = max of all the gathered timestamps.

• Each participant waits until TT_now.earliest > ts before releasing locks.
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Execution in Our Post Example

37
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Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

physical time

ack 
to AA

38

Execution in Our Post Example
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Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

physical time

ack 
to A

Tb: w(b, “post_b”)

A B

39
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Execution in Our Post ExampleExecution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

ack 
to A

Tb: w(b, “post_b”)

A B

40
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Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

ack 
to A

Tb: w(b, “post_b”)

A B

41

Because TT_now().earliest > ta (on all 
machines!), it is guaranteed that tb > ta.
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Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

42

Tc: r(a), r(b)   ?
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physical time

tc = TT_now(). 
latest

TT_now(). 
earliest > tc

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
what do reads return?

Case 1: tc < ta < tb
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physical time

tc = TT_now(). 
latest

TT_now(). 
earliest > tc

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
what do reads return?
A: pre_post_a and pre_post_b

Case 1: tc < ta < tb
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physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)

Case 1’: tc < ta < tb,
but TC reads a, b later

tc = TT_now(). 
latest

TT_now(). 
earliest > tc

what do reads return?
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physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
tc = TT_now(). 
latest

TT_now(). 
earliest > tc

what do reads return?
A: Still pre_post_a and pre_post_b

Case 1’: tc < ta < tb,
but TC reads a, b later
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physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
what do reads return?

Case 2: ta < tc < tb

tc = 
TT_now(). 
latest

TT_now(). earliest > tc
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physical time

tc = 
TT_now(). 
latest

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
what do reads return?
A: post_a, pre_post_b

TT_now(). earliest > tc

Case 2: ta < tc < tb
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physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc)
r(b@tc)what do reads return? tc = 

TT_now(). 
latest

TT_now()
. earliest 
> tc

Case 3: ta < tb < tc
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physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now(). 
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc)
r(b@tc)what do reads return?

A: post_a, post_b

tc = 
TT_now(). 
latest

TT_now(). 
earliest > 
tc

Case 3: ta < tb < tc
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Implications of Commit Wait

• the larger the uncertainty bound from TrueTime, the longer 
commit wait period you get  

• commit wait will slow down dependent transactions, since 
locks are held during commit wait  

• so, as time gets less certain, Spanner gets slower (!!).  
View talk or read paper for an evaluation. 

Safety are given by the (assumed) correctness of the 
(earliest, latest) interval.
Performance is given by the size of the interval.
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Key Papers

• Spanner paper.
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https://research.google.com/archive/spanner-osdi2012.pdf

