
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Spanner

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

3

• We learned about several key mechanisms and protocols for
achieving scalability and fault tolerance in a strong-semantic,
transactional database.
– Two-phase locking – what’s this for?
– Write-ahead logging – what’s this for?
– Two-phase commit – what’s this for?
– Paxos – what’s this for?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

• We learned about several key mechanisms and protocols for
achieving scalability and fault tolerance in a strong-semantic,
transactional database.
– Two-phase locking – for isolation
– Write-ahead logging – for atomicity in single-node DB
– Two-phase commit – for atomicity in sharded DB for scalability
– Paxos – for consistent replication for fault tolerance

• Today we look at the design and implementation of Spanner,
Google’s scalable and fault-tolerant ACID database, which
combines all these building blocks (and more).

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Outline

• Overview and architecture

• TrueTime

• Using TrueTime for efficient linearizable transactions

• Then, YOU will read/view Spanner paper/talk
https://www.usenix.org/node/170855.

5

https://www.usenix.org/node/170855

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Overview

• Relational API
• ACID transactions
• Geographically replicated
• Sharded by rows

6

Table

…

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Overview

• Relational API
• ACID transactions
• Geographically replicated
• Sharded by rows

7

Tablet 1

Tablet 2

Tablet n
(dynamic #)

Table

…

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Architecture

8

Replica group
for Tablet i

Replica group
for Tablet j

Replica group
for Tablet k

…Leader Leader Leader

2PL, WAL 2PL, WAL 2PL, WAL

Paxos WAL repl. Paxos WAL repl. Paxos WAL repl.

geo-distributed tablet servers

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Architecture

9

2PC

Replica group
for Tablet i

Replica group
for Tablet j

Replica group
for Tablet k

…
2PC

Transaction:
Begin(); update row1; update row2; update row3; Commit()

Paxos WAL repl. Paxos WAL repl. Paxos WAL repl.
Leader Leader

2PL, WAL2PL, WAL

geo-distributed tablet servers

2PL, WAL

Leader

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Architecture

10

2PC

Replica group
for Tablet i

Replica group
for Tablet j

Replica group
for Tablet k

…
2PC

Transaction:
Begin(); update row1; update row2; update row3; Commit()

Paxos WAL repl. Paxos WAL repl. Paxos WAL repl.
Leader Leader, TC Leader

2PL, WAL 2PL, WAL2PL, WAL

geo-distributed tablet servers

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Properties

• Semantics?
• Performance?

11

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Semantics/Performance
• Spanner provides atomic, serializable transactions that can be

performed at scale and with geographic fault tolerance.

• Performance: 2PC, especially across geographically replicated
groups, is expensive!

• “[S]ome authors have claimed that two-phase commit is too
expensive to support, because of the performance or availability
problems that it brings. We believe it is better to have application
programmers deal with performance problems due to overuse of
transactions as bottlenecks arise, rather than always coding
around the lack of transactions.” -- Spanner authors

12

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

More on Performance
• Consider what happens when

you do 2PL + 2PC + Paxos
WAL replication across
geographies.

• What locks must be taken
to give illusion of serial
execution?

• How long do they need to
be retained?

• How does that impact
performance esp. if Tx
2PC on Paxos?

 “000”

Tx2: scan
 query

“999”

Tx1: point write query

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

More on Performance

• Need to take r/w locks for
all accessed (read/written)
rows.

• Locks must be held until
the end of the transactions.

• Scan queries, which
interact with lots of tablet
servers, block other Tx’s
from executing.

 “000”

Tx1: point write query Tx2: scan
 query

“999”

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

More on Performance

(continued)
• Add to that that 2PC may

be involved in some
expensive transactions.

• Plus all the cross-geo
Paxos to make sure any
updates are replicated.

• This interaction across
transactions is what’s
expensive!

 “000”

Tx2: scan
 query

“999”

Tx1: point write query

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

What Can We Do?
• Option 1: Take fewer locks or hold them for less time. This would

weaken the semantic (won’t be equivalent to serial execution).
• But “[w]e believe it is better to have application programmers deal

with performance problems due to overuse of transactions as
bottlenecks arise, rather than always coding around the lack of
transactions.” – Spanner authors

• Option 2: Distinguish two types of queries -- (1) point r/w queries and
(2) r/o scans -- and treat them differently:

• Do 2PL for point queries.
• Do lockless concurrency control for r/o scans.
• Preserves semantics and reduces performance interference.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Lockless Concurrency Control
• Multi-versioned concurrency control (MVCC) is a popular lockless

concurrency control mechanism, which is used in Spanner.

• Each row in the table is versioned. Any r/w transaction creates a new
version of the rows it changes.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Lockless Concurrency Control
• Multi-versioned concurrency control (MVCC) is a popular lockless

concurrency control mechanism, which is used in Spanner.

• Each row in the table is versioned. Any r/w transaction creates a new
version of the rows it changes.

t1

t3
t2• IF you had a global notion of time, then

you could timestamp the table version.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

• Multi-versioned concurrency control (MVCC) is a popular lockless
concurrency control mechanism, which is used in Spanner.

• Each row in the table is versioned. Any r/w transaction creates a new
version of the rows it changes.

Lockless Concurrency Control

• IF you had a global notion of time, then
you could timestamp the table version.

t1

t3
t2t

• Then, when doing a r/o scan, you could:
• Get a timestamp for that transaction: t.
• Read the values of each row you’re interested in at the time t.
• IF all nodes agreed on the notion of time, you get serializability.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

What Global Time?

• Option 1: logical clocks. There are MVCC protocols based
on that and they would give you serializability.

• But logical clocks have some limitations, including that they
only capture internal causality, not external.

• What problems could arise?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

• A writes a post (Ta).
• A calls B to tell them.
• B writes a post with their opinion

about A’s post (Tb).
• Friend C does a r/o scan of all

posts from their friends (Tc).
• C should not see B’s post without

seeing A’s, because Ta
committed before Tb started, and
hence Tb could have been
influenced by Ta (directly or
indirectly, internally or externally).

21

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

22

Replica group
for Tablet i

Paxos
Leader

Replica group
for Tablet j

Paxos
Leader

Ta: W(a, “post_a”) Tb: W(b, “post_b”)

Tc: R(a), R(b)

• A writes a post (Ta).
• A calls B to tell them.
• B writes a post with their opinion

about A’s post (Tb).
• Friend C does a r/o scan of all

posts from their friends (Tc).
• C should not see B’s post without

seeing A’s, because Ta
committed before Tb started, and
hence Tb could have been
influenced by Ta (directly or
indirectly, internally or externally).

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

23

Replica group
for Tablet i

Paxos
Leader

Replica group
for Tablet j

Paxos
Leader

Ta: W(a, “post_a”) Tb: W(b, “post_b”)

Tc: R(a), R(b)

• I.e., the only possibilities for
Tc are to read a, b must be:
– ”post_a”, “post_b”
– “pre_post_a”, “pre_post_b”
– “post_a”, “pre_post_b”

• NOT:
– “pre_post_a”, “post_b”

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

24

Replica group
for Tablet i

Paxos
Leader

Replica group
for Tablet j

Paxos
Leader

Ta: W(a, “post_a”) Tb: W(b, “post_b”)

Tc: R(a), R(b)

• I.e., the only possibilities for
Tc are to read a, b must be:
– ”post_a”, “post_b”
– “pre_post_a”, “pre_post_b”
– “post_a”, “pre_post_b”

• NOT:
– “pre_post_a”, “post_b”

That is what Spanner ensures, and the property is called
linearizability (stronger than serializability).

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

How about Physical Clocks?

• Option 2: make physical time work!
• Google chose this option, with TrueTime, their strong-semantic time

service.
• With this notion of time, you can actually get linearizable

consistency and serializable isolation.

25

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

TrueTime

• Highly available, distributed clock that is provided to applications
on all Google servers.

• Enables applications to generate monotonically increasing
timestamps across all servers.

• An application can compute a timestamp T that is guaranteed to
be greater than any timestamp T' if T' finished being generated
before T started being generated. This guarantee holds even if
T, T’ are computed on different machines.

26

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

TrueTime Architecture

• In each data center, they have a set of expensive, but very
accurate, atomic clocks. They use these as reference clocks.

• On each machine, they have a regular clock (e.g., quartz),
which is inexpensive but inexact. The machine runs a time
daemon that selects multiple reference clocks from multiple
data centers and performs a synchronization protocol with
them. The protocol bounds the error very precisely -- up to a
few milliseconds in general (under reasonable assumptions).

• Between synchronizations, the time daemon will accumulate
error: about 200usec/second is applied, which is >> than the
clock drift on their quartz clocks.

27

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

TrueTime Interface

tt.latest – tt.earliest = epsilon
– Epsilon is called the instantaneous uncertainty bound.
– In practice, epsilon saw-tooths between 1ms and 6ms.

28

epsilon

time

1ms

6ms

sync sync sync sync

typedef struct TT_interval {
 struct timeval earliest;
 struct timeval latest;
} TT_interval;
TT_interval *TT_now(TT_interval *tt);

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Serializable Transactions in Spanner
• R/W transactions are executed with 2PL (+2PC+Paxos) and fork a new

version of each modified row (copy-on-write style).

• All rows modified by a R/W transaction are tagged with a TrueTime
timestamp associated with that transaction.

• R/O scan transactions are executed without
locking but with isolation by reading a
consistent version of the rows at a TrueTime
timestamp associated with the transaction.

• Question: How to associate a timestamp to r/w and r/o transactions to ensure
serializability? (i) What timestamp to select (ii) When to select it?

t1

t3
t2t

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example
• RW T1: ts = 127, updates row1, row2, row3

• RW T2: ts = 129, updates row1, row3, row4

• RO T3: ts = ?

• Row1: 123, 127, 129

• Row2: 123, 127

• Row3: 123, 127, 129

• Row4: 109, 129

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example
• RW T1: ts = 127, updates row1, row2, row3

• RW T2: ts = 129, updates row1, row3, row4

• RO T3: ts = (say) 130

• Row1: 123, 127, 129 |

• Row2: 123, 127 |

• Row3: 123, 127, 129 |

• Row4: 109, 129 |

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example
• RW T1: ts = 127, updates row1, row2, row3

• RW T2: ts = 129, updates row1, row3, row4

• RO T3: ts = (say) 128

• Row1: 123, 127, | 129

• Row2: 123, 127 |

• Row3: 123, 127 |, 129

• Row4: 109 |, 129

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example
• RW T1: ts = 127, updates row1, row2, row3

• RW T2: ts = 129, updates row1, row3, row4

• RO T3: ts = (say) 125

• Row1: 123 | , 127, 129

• Row2: 123 |, 127

• Row3: 123 |, 127, 129

• Row4: 109 |, 129

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

What Timestamp to Select?

• For a r/o transaction Tr to execute
isolated from any ongoing r/w
transaction Tw, then Tr’s and Tw’s
timestamps must meet two conditions:
1. If Tr reads any effect of Tw, then

Tr’s timestamp > Tw’s timestamp.
2. If Tr doesn’t read some effect of

Tw, then Tr’s timestamp < Tw’s
timestamp.

Key idea:
 ts = TT_now().latest;
 waitUntil(TT_now().earliest > ts);
 // Then perform transaction using
 // ts as its assigned timestamp.

• Serializability for r/w transactions is ensured through 2PL. The question is
how to ensure it for r/o transactions, which are lockless.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

When to Select a Timestamp?

R/O transaction:

tr = TT_now().latest

read latest version <= tr

TT_now().earliest > tr

all locks
acquired

first lock
released

R/W transaction:

tw = TT_now().latest TT_now().earliest > tw

versions created by
writes in this TX are

stamped with tw

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

With Multiple Shard Servers
• R/O transactions:

• Client selects the timestamp ts and shard servers may have to wait
until their TT_now().earliest > ts before they give out a value.

• R/W transactions:

• TC gathers timestamps from Prepare responses from participants
(which are Paxos leaders, remember).

• TC selects ts = max of all the gathered timestamps.

• Each participant waits until TT_now.earliest > ts before releasing locks.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Execution in Our Post Example

37

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

physical time

ack
to AA

38

Execution in Our Post Example

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

physical time

ack
to A

Tb: w(b, “post_b”)

A B

39

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Execution in Our Post ExampleExecution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

ack
to A

Tb: w(b, “post_b”)

A B

40

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

ack
to A

Tb: w(b, “post_b”)

A B

41

Because TT_now().earliest > ta (on all
machines!), it is guaranteed that tb > ta.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

42

Tc: r(a), r(b) ?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

physical time

tc = TT_now().
latest

TT_now().
earliest > tc

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
what do reads return?

Case 1: tc < ta < tb

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

physical time

tc = TT_now().
latest

TT_now().
earliest > tc

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
what do reads return?
A: pre_post_a and pre_post_b

Case 1: tc < ta < tb

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)

Case 1’: tc < ta < tb,
but TC reads a, b later

tc = TT_now().
latest

TT_now().
earliest > tc

what do reads return?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
tc = TT_now().
latest

TT_now().
earliest > tc

what do reads return?
A: Still pre_post_a and pre_post_b

Case 1’: tc < ta < tb,
but TC reads a, b later

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
what do reads return?

Case 2: ta < tc < tb

tc =
TT_now().
latest

TT_now(). earliest > tc

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

physical time

tc =
TT_now().
latest

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc) r(b@tc)
what do reads return?
A: post_a, pre_post_b

TT_now(). earliest > tc

Case 2: ta < tc < tb

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc)
r(b@tc)what do reads return? tc =

TT_now().
latest

TT_now()
. earliest
> tc

Case 3: ta < tb < tc

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

physical time

Execution in Our Post Example

Ta: w(a, “post_a”)

ta = TT_now().
latest

a@ta := “post_a”

TT_now().
earliest > ta

tb = TT_now().latest TT_now().earliest > tb

physical timeb@tb := “post_b”

Tb: w(b, “post_b”)

Tc: r(a), r(b)

r(a@tc)
r(b@tc)what do reads return?

A: post_a, post_b

tc =
TT_now().
latest

TT_now().
earliest >
tc

Case 3: ta < tb < tc

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Implications of Commit Wait

• the larger the uncertainty bound from TrueTime, the longer
commit wait period you get

• commit wait will slow down dependent transactions, since
locks are held during commit wait

• so, as time gets less certain, Spanner gets slower (!!).
View talk or read paper for an evaluation.

Safety are given by the (assumed) correctness of the
(earliest, latest) interval.
Performance is given by the size of the interval.

51

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Key Papers

• Spanner paper.

52

https://research.google.com/archive/spanner-osdi2012.pdf

