
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Consensus Protocols
(Paxos)

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

• We learned how to achieve atomicity,
isolation in a sharded database.

• Today we learn how to achieve fault
tolerance through replication. Problem
of maintaining multiple replicated
shards can ultimately be reduced to
consensus.

• We discuss Paxos, the best known
consensus protocol.

3

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Outline

• Problem: Replicating ACID shards
• Mock protocol with 2PC
• Consensus protocols
• Paxos

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Problem:
Replicating ACID shards

5

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Web Service with Transactions

• Assume: sharded database.
Each DB shard runs an ACID
engine (so runs 2PL+WAL). The
shards coordinate via 2PC.

• Question: Without shard
replication, what fault tolerance
problems can arise?

6

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Web Service with Transactions

• Fault tolerance problems w/o replication:
– Data, WAL for each shard are stored on

one disk. If disk dies, shard’s data is lost.
Durability problem!

– Even if disks don’t fail, recall that 2PC can
block if a shard server fails at inopportune
time. Transactions interacting with the
failed server block, along with many new
transactions that transitively depend on
rows locked by the blocked transactions.
Availability problems!

7

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Solution: Replication

• Architecture:
– Replicate each shard across multiple

servers (each ACID, so they maintain
WAL and do 2PL).

– Replicas of a shard coordinate to maintain
their state “in sync,” ideally giving the
illusion that they are a single, (almost)
always-on server.

– 2PC is executed across replica groups
(we’ll discuss how in future lectures).
Because replica groups “never” die or
become partitioned, 2PC “never” blocks.
8

replica
group for
shard 1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Question 1: What State to Replicate?

- Disk image?
- In-memory image?
- WAL?
- Locks?
- … Anything else?

9

A
(ACID)

B
(ACID)

C
(ACID)

replica group for shard 1

protocol

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Basic Answer: Replicate WAL

• Claim: If all replicas execute all WAL ops, in the same
order, then all other state (DB image, locks, …) will be
reconstructed in the same way across replicas
(assuming deterministic operation).

• It can be useful to be able to push checkpoints of the DB
to a recovering/new replica, but we’ll ignore that for now
and focus on replicating the WAL.

10

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Question 2: What Semantic to Require?

• Requirement: all replicas apply (1) the same log entries,
(2) in the same order.

• Otherwise, inconsistencies can occur.
• As examples, consider:

– One replica skips log entry for an update while others apply it.
– One replica receives two updates for a particular row in one

order while another receives them reversed.

11

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Question 3: How to Replicate?

• Requirement: all replicas apply (1) the same log entries,
(2) in the same order.

• One idea: 2PC.
– 2PC ensures that all participants either do all ops or

don’t do any of the operations.
– Could we use this protocol for WAL replication?

12

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Mock protocol based on 2PC

13

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Mock 2PC-based Replication

14

2. PREPARE-

OK/FAIL
1. PREPARE

A

B

C

Commit Phase

4. OK
A

B

C

Prepare Phase

• A, B, C are replicas of a single shard. They need to
coordinate to apply all WAL entries in the same order.

• Discuss how might it work and what problems would arise.

BREAKOUT
ACTIVITY!

3. COMMIT/ABORT

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Roxana’s Mock

15

• One replica assigned as TC. TC decides on order of ops
in the log and performs 2PC for each log entry, every time
blocking for the protocol to finish before launching a 2PC
for the next log entry.

• This ensures that all replicas:
– Apply all log entries (thanks to 2PC).
– Apply log entries in the same order (thanks to sequential

way in which TC performs log entry pushes to participants).

• Can be optimized to do 2PC for batches of log entries --
when would you need to push a batch???

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Problems with Mock

16

1. NOT fault tolerant (but durable):
– Because TC must wait for all replicas to reply that they are going to

perform the update, the coordinator needs to block every time one
replica is slow, disconnected, or dead.

– But the mock does provide more durability than 2PC across shards.

2. When the coordinator dies, someone else must become
coordinator. Yet, we must have only one (at most) coordinator,
otherwise different coordinators may impose different orders on
log entries. This is called leader election and is not addressed in
2PC, which assumes a static coordinator!

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Consensus protocols

17

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Consensus Protocols

• Require only a majority of nodes to be up at any time in
order to make progress.

• Similar to 2PC, but instead of waiting for all participants to
respond, they wait for a majority of the replicas to respond.
– In a fail-stop failure model (i.e., nodes are not malicious),

the majority needed is a simple majority; i.e., one can tolerate
f simultaneous failures with 2f+1 replicas.

– In a malicious failure model, one needs a super-majority,
i.e., one can tolerate f simultaneous failures with 3f+1 replicas.

18

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Simple Majorities
• There cannot exist two majorities in a given group at the same time.

– This means that if a node obtains OKs from a majority of nodes – say in a first
phase like 2PC’s – then another node (e.g., another simultaneous coordinator)
is guaranteed to not have obtained OKs from a majority of the nodes.

– This lets us replace a dead Coordinator with a new one without introducing
inconsistencies. That’s how we address the leader election problem.

• Any two majorities of a group will overlap in at least one node.
– This means that if an old Coordinator obtained OKs from a majority of the nodes,

then sent COMMIT messages that were received by a majority of the nodes, and
subsequently crashed before it could inform the other nodes of the COMMIT
outcome, then a new Coordinator that is “elected” subsequently, will learn about
the outcome by talking to any (other) majority, and so it can continue the commit
process that the first (now dead) Coordinator began.

19

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Paxos and RAFT

• Paxos [Lamport-1998]: Original protocol. Solves the basic
consensus problem as defined in the Agreement lecture
(consensus on the value of a write-once register, with the
consistency, validity, and termination requirements).

• RAFT [Ongaro-Ousterhout-2014]: More recent, operates at
a higher level of abstraction, and shows very clearly how
to replicate the WAL (for example) to implement
fault-tolerant transactions.

• We’ll focus on Paxos, and its extension to WAL.
20

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Paxos

21

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Paxos

• Widely used in industry to solve various instances of
consensus that occur in DS:
– Google: Chubby (Paxos-based distributed lock service),

Spanner (transactional storage)
– Yahoo: Zookeeper (Paxos-based distributed lock service)
– Open source: libpaxos (Paxos-based atomic broadcast)

22

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Gist

23

A B

C

x=null x=null

x=null

• Paxos solves the generic problem of consensus: N nodes
want to agree on the value of a write-once register.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Gist

24

A B

C

x=V x=V

x=V

• Paxos solves the generic problem of consensus: N nodes
want to agree on the value of a write-once register.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Gist

25

• Paxos solves the generic problem of consensus: N nodes
want to agree on the value of a write-once register.

• The protocol guarantees:
1. consistency (all non-faulty nodes choose the same value);
2. validity (the chosen value was proposed by a proposer).

• The protocol is likely to achieve but does not guarantee:
3. termination (eventually, a value is chosen).

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Gist

26

A B

C

Proposer

Acceptors

• All nodes can fulfill two roles:
– Proposers: issue a series of rounds of

proposals, ordered with logical clocks.
– Acceptors: accept or reject values from

proposers according to a specific protocol.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Gist

27

A B

C

Proposer

Acceptors

Proposer

• All nodes can fulfill two roles:
– Proposers: issue a series of rounds of

proposals, ordered with logical clocks.
– Acceptors: accept or reject values from

proposers according to a specific protocol.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Gist

• All nodes can fulfill two roles:
– Proposers: issue a series of rounds of

proposals, ordered with logical clocks.
– Acceptors: accept or reject values from

proposers according to a specific protocol.

• A value is chosen when a majority of
acceptors have accepted it.

• A proposer announces a chosen value or tries
again if it’s failed to converge on a value.

28

A B

C

Proposer

Acceptors

Proposer

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

The Protocol

• State maintained by each node:
– Np: highest proposal number seen to date (initially nil);
– Na: highest accepted proposal (initially nil);
– Va: the value of the highest accepted proposal (initially nil);
– Done: whether consensus has been reached (initially false).

• Protocol has three phases:
– Propose
– Accept
– Decide

29

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Phase 1: Propose

• @Proposer: (assumes Done=false)
– Choose a new proposal number, N > Np.
– Send <PROPOSE, N> to acceptors (including himself).
– Wait until a majority of acceptors return PROPOSE-OK. If time out,

back off and restart Paxos.

• @Acceptor: Upon receiving a <PROPOSE, N> request:
– If N > Np then:

• Update Np = N
• Reply <PROPOSE-OK, Na, Va>

30

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Phase 2: Accept

• @Proposer: (assumes PROPOSE-OKs from majority acceptors)
– Choose V := the value of the highest-numbered proposal among

those returned by the acceptors (or any value if no Va returned).
– Send <ACCEPT, N, V> to all acceptors (including himself).
– Wait until a majority of acceptors return ACCEPT-OK. If time out,

back off and restart Paxos.

• @Acceptor: Upon receiving an <ACCEPT, N, V>:
– If N >= Np then:

• Update Np = N, Na = N, Va = V
• Reply <ACCEPT-OK>

31

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Phase 3: Decide

• @Proposer: (assumes ACCEPT-OKs from majority of acceptors):
– Send Done to client, signaling that consensus has been reached.
– Send <DECIDE, N, V> to all acceptors (including himself). [Can keep

resending until all reply, but realize that acceptors can learn decision from
other proposers too.]

• @Acceptor: Upon receiving a <DECIDE, N, V>
– If N >= Np then:

• Set Np = N, Na = N, Va = V
• Reply <DECIDE-OK>
• Set Done = true and terminate Paxos.

32

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Examples

• Paxos is best understood by first reading protocol, then
examples, then reading protocol, then examples, …

• We’ll go through several examples next.

• Please re-read protocol at home and construct your own
examples, questioning the protocol. It’s the best way to
understand it!

33

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

propose,1:N1

N0 N1
(proposer)

N2

np=0:N1
na = va = null

np=0:N0
na = va =
null

np= 1:N1
na = null
va = null

propose,1:N1

ok, 1:N1, na =va=null np = 1:N1
na = null
va = null

np=0:N2
na = va = null

accept,1:N1, V accept,1:N1, V
np=1:N1
na = 1:N1
va = V

np = 1:N1
na = 1:N1
va = V

ok, 1:N1

decide, V decide, V

1. Single Proposer

ok, 1:N1, na =va=null

ok,1:N1

34

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

propose,1
P1 A2 P2

propose,2

2. With Concurrent Proposers
A1 A3

ok, 1, na=va=null

ok, 2, na=va=null

accept, 1, V

reject, 2 accept,2, V’

ok, 2

35

consensus is
reached, value
is V’; return
to client.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

propose,1
P1 A2 P2

3. With Sequential Proposers
A1 A3

ok, 1, na=va=null

accept, 1, V

ok, 1 propose,2

ok, 2, na=1, va=V

accept, 2, V

ok, 2

36

V remains the
consensus value.

consensus is
reached,
value is V;
return to
client.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

propose,1
P1 A2 P2

4. With Failures
A1 A3

ok, 1, na= va=null

accept, 1, V

ok, 1

propose,2

ok, 2, na=va=null

37

consensus is
reached,
value is V;
return to
client.

no majority
reached; back off
and try again
(unless P2 learns
the chosen value in
the meantime
thanks to P1’s
decision messages).

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

propose,1
P1 A2 P2

5. With Failures
A1 A3

ok, 1, na= va=null

accept, 1, V

reject, 2

propose,2

ok, 2, na=va=null

accept, 2, V’

ok, 2, na=va=null

ok, 1

ok, 2

38

consensus is
not yet
reached; P1
backs off
for a while.

consensus is
reached; V’ is the
chosen value; A1
will find out later
when it manages
to get the Decide
message from P2.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

propose,1
P1 A2 P2

6. With Failures
A1 A3

accept, 1, V

reject, 2

propose,2

ok, 2, na=va=null

accept, 2, V’

ok, 2, na=va=null

ok, 1

ok, 2

ok, 1, na= va=null

39

consensus is
not yet
reached; P1
backs off
for a while.

as before, but
P2’s majorities
are different in
the two phases.
Yet, consensus
is still reached
on value V’.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

propose,1
P1 A2 P2

7. With Failures
A1 A3

propose,2

propose, 3

accept-ok, 1

accept-ok, 2

(skip two
exchanges)

P3

…

…

accept-ok, 3

…

40

P1 reaches
consensus;
chosen value is
P1’s default, V.

P2 reaches
consensus;
chosen value
is still V,
thanks to A2.

P3 reaches
consensus;
chosen value
is still V,
thanks to A3.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Paxos Is Fault-Tolerant
• A Paxos run consists of one or more rounds conducted by different

proposers. New proposers continue the work of previous proposers.

• If one proposer dies, another one times out and offers to be the
proposer. Because of how the protocol is structured (that value
choice based on highest-Na), the new proposer will continue
propagating a formerly chosen value.

• A Paxos run is successful if at least a majority of the nodes is up and
accepts the proposal.

• But, there are degenerate cases where Paxos doesn’t finish (next
slide). These can be made unlikely w/ random back-offs.

41

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana GeambasuPaxos May Not Terminate

propose,n
P1 A2 P2A1 A3

ok, n, na=va=null

accept, n, V

reject, n+1

propose,n+1

ok, n+1, na=va=null

accept, n+1, V’

reject, n+2

ok,n+2,na=va=null

propose,n+2

Dueling proposers.
Solution: random
backoff.42

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Extending to Read-Write: Multi-Paxos

• Preceding protocol solves the basic problem of consensus
on write-once registers.

• Real consensus problems don’t look like that because real
data structures one wishes to replicate are rarely write-once.

• But many useful data structures can be reduced to a set of
write-once registers.

• Example: The WAL is a long vector of write-once registers.
– Each index in the log (record #1, #2, …) is written once and

never updated.

43

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Replicating WAL
• You start out with an empty log, i.e., no value

is assigned to any of the indexes.

• For each index, you use Paxos to ensure the
replicas agree on what value (record, such as
begin, update, commit, prepare,…) is
recorded at a particular index in the log.

• When a replica has a record to append to the
log, it picks an unused index and proposes to
become a proposer. If no acceptor returns a
value for that index, the proposer can use its
record as the value. 44

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Inefficiencies of Multi-Paxos

• Preceding description of multi-paxos is inefficient:
– Clients are allowed to interact with any replica, so proposers

may duel, causes a lot of useless work.
– Each time a replica becomes a proposer, it needs to run the

first phase (PREPARE) to get agreement on N.

• The solution is to have a stable Leader, similar to 2PC
except the leader can change seamlessly if needed.

45

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Leader-based Multi-Paxos

• Say proposer P completes first phase. Then, P can assume the
role of a Leader for a predefined period of time (lease time).

• Any replica that is not a leader rejects client requests and
forwards the client to the node it believes is the leader.

• P interacts with clients and fast-tracks its proposals from the
ACCEPT phase.

• Changing the Leader is achieved with leaderless multi-Paxos,
with versions of the leader being indexed by a “view number.”
– A replica will reject a Leader change until it hasn’t heard from

former leader for a predefined amount of time (lease time).

46

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Lease

• Gives a node permission to act in a certain role for a period of
time (real time!), with the possibility of renewal in that timeframe.

• Used throughout DSes as an optimization.
– Logical clocks (Np, Na in Paxos) are used for safety/correctness,

as they don’t raise synchronization challenges.
– Physical time, through leases, is used for optimization.

• Assumption: small clock skew during lease period!
– This is why leases can’t be too long!
– E.g., 30-second leases are typical.

47

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Next Time

• Applications of Paxos (and 2PC) in real life:
– Spanner: Google’s geo-distributed, fault-tolerant,

scalable ACID database.
– Chubby: Google’s lock service.

48

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Key Papers

• [Lamport-1998] Leslie Lamport. The Part-time Parliament.
In ACM Transactions on Computer Systems, 1998.

• [Lamport-2001] Leslie Lamport. Paxos Made Simple. In
ACM SIGACT News, 2001.

• [Ongaro-Ousterhout-2014] Diego Ongaro and John
Ousterhout. In Search of an Understandable Consensus
Algorithm. In USENIX ATC, 2014.

49

