
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Atomic Commitment Protocols
(Two-Phase Commit)

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

• We return to the distributed setting and discuss how
distributed transactions are implemented.

• Why do we distribute and what are the main mechanisms?
– Scalability: sharding
– Fault tolerance: replication

• These mechanisms raise semantic challenges, which are
addressed with rigorous protocols, such as:
– Two-phase commit: atomic commitment protocol for sharding.
– Paxos: a consensus protocol for replication.

3

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Outline

• Motivating example
• Two-phase commit (2PC)
• 2PC limitations
• Next time: Paxos

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Motivating Example

5

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Web Service Architecture

6

● Web front end (FE), database server (DB),
network. FE is stateless, all state in DB.

● Suppose the FE implements a banking
application (supporting account transfers,
listings, and other functionality).

● Suppose the DB supports ACID
transactions and the FE uses transactions.

Question: How do we make this:
- scalable?
- fault tolerant?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Scalability: Sharding

7

• FE and DB are both sharded:
○ FEs accept requests from

end-users’ browsers and
process them concurrently.

○ DB is sharded, say by user
IDs.

• Suppose each DB backend is on
its own transactional (ACID).
Then, FE issues transactions
against one or more DB shards.

DB
Shard 2

DB
Shard 1

DB
Shard n

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Fault Tolerance: Replication

8

● FE is stateless, so the fact that it is
shared means it’s also replicated/fault
tolerant.

● But DB is stateful, so active replication
is needed for each shard. Each shard
is managed by a replica group, which
cooperate to keep themselves up to
date with respect to the updates.

● FE sends requests for DB different
shards go to different replica groups.

replica
group for
shard 1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Challenges

9

Question: What are the
challenges of implementing
ACID across the entire
sharded & replicated, DB
service?

replica
group for
shard 1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Challenges due to Sharding

10

• Ignore replication. Implementing
ACID across all DB shard servers:

• Case 1: No transactions ever span
multiple shards. Easy: individual
DB shard performs transaction.

• Case 2: Transactions can span
multiple shards. Challenge: shards
participating on any transaction
need to agree on (1) whether or
not to commit a transaction and (2)
when to release the locks.

DB
Shard 2

DB
Shard 1

DB
Shard n

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Challenges due to Sharding (cont.)

11

Example:
• Say FE service is a banking

service that supports the
TRANSFER and REPORT_SUM
functions from the previous lecture.

• If the two accounts are stored on
different shards, then the two
operations (deduct from one and
add to the other) will need to be
executed either both or neither.

• Unfortunately, the two machines
can fail, or decide to unilaterally
abort, INDEPENDENTLY.

DB
Shard 2

DB
Shard 1

DB
Shard n

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Challenges due to Sharding (cont.)

12

Example (continued):
• So, you need an agreement

protocol, and in this case the most
suitable is an atomic commitment
protocol (why?).

• Well-known atomic commitment
protocol: two-phase commit.DB

Shard 2
DB

Shard 1
DB

Shard n

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Challenges due to Replication

Ignore sharding. Implementing ACID
across all replicas of a given shard:

• Challenge: All replicas of the shard
must execute all operations in
the same order.

• If the operations are deterministic,
then agreeing on the order of
keeps the copies of the database
on the different replicas will evolve
identically, i.e., they will all be kept
consistent.

13

Shard 1 /
Replica A

Shard 1 /
Replica B

Shard 1 /
Replica C

replica
group
for
Shard 1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Challenges due to Replication (cont.)

Example:
● Suppose there are two transactions,

each with a single operation, against
the same cell in the database:

○ TX1: x += 1
○ TX2: x *= 2

● Internally, all three replicas are ACID
databases, so they will serialize these
transactions, e.g., either (TX1, TX2)
OR (TX2, TX1).

● If Replica A processes (TX1, TX2) and
Replica B processes (TX2, TX1), then
after executing these transactions, the
DB copies on the two replicas will
diverge to x=8 and x=7, respectively.

14

Shard 1 /
Replica A

Shard 1 /
Replica B

Shard 1 /
Replica C

replica
group
for
Shard 1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Challenges due to Replication (cont.)

Example (continued):
• The problem of agreement on

the order in which to execute
operations can be cast as an
instance of the consensus
problem (why?).

• Well known consensus protocol:
Paxos.

• We study this protocol next time.

15

Shard 1 /
Replica A

Shard 1 /
Replica B

Shard 1 /
Replica C

replica
group
for
Shard 1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two-Phase Commit (2PC)

16

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two-Phase Commit (2PC)

17

2.
PREPA

RE-

OK/FA
IL

1.
PREPA

RE

TC

A

B

C

Prepare Phase

4.
OK/FA

IL

3.

COMMIT
/A

BORT

TC

A

B

C

Commit Phase

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

2PC for Distributed Transactions

How 2PC integrates with WAL, 2PL that we studied for local transactions.

Here’s a rough description of a client lib for distributed transactions:

• begin(): Client lib begin()’s a transaction on each separate shard. This
produces a separate txID on each server (Tx.S1, Tx.S2…).

• As part of the distributed TX, the client sends the operation to the
corresponding shard server. Say op1 goes to S1, op2 goes to S2. Each
server grabs local locks, adds op to their local WAL.

• abort(): Client sends the ABORT message to S1, S2, ….
18

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Commit Phase

2PC commit()

19

TC

S1

S2

S3

4.
OK

3.
COMMIT

/A
BORT

TC

S1

S2

S3

1.
PREPA

RE(T
x.S

1)

either client lib
or one of Si
becomes TC.

Prepare Phase
2.

PREPA
RE-

OK/FA
IL

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Commit Phase

2PC commit()

2.
PREPA

RE-

OK/FA
IL

TC

S1

S2

S3

4.
OK/FA

IL

3.
COMMIT

/A
BO

RT

TC

S1

S2

S3

Prepare Phase

20

(while holding locks for Tx.S1)
2.1. can commit transaction Tx.S1?
2.2. write PREPAE-OK/FAIL to WAL.
2.3. send PREPARE-OK/FAIL to TC.
2.4. wait to hear response from TC.
(continue holding locks for Tx.S1)

1.
PREPA

RE(T
x.S

1)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

2PC commit()

21

2.
PREPA

RE-O
K/FA

IL1.
PREPA

RE

TC

S1

S2

S3

Prepare Phase

4.
OK

3.
COMMIT

/A
BORT(

Tx
.S

1)

TC

S1

S2

S3

Commit Phase

3.1. upon receipt of PREPARE-OK/FAIL or
TIMEOUT from all participants:

• if all PREPARE-OK: outcome=COMMIT
• else: outcome=ABORT

3.2. write outcome to WAL (if COMMIT,
flush).

3.3. send outcome to participants, client.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

2PC commit()

22

2.
PREPA

RE-O
K/FA

IL1.
PREPA

RE

TC

A

B

C

Prepare Phase

S1

S2

S3

4.
OK

3.
COMMIT

/A
BORT(

Tx
.S

1)

Commit Phase
(recall S1 is holding locks for Tx.S1)
4.1. enter COMMIT/ABORT in its WAL

(if COMMIT, also flush).
4.2. if ABORT, revert Tx.S1 using WAL.
4.3. release all locks for Tx.S1.
4.4. send OK to TC (who will keep

retrying to send outcome to
participants until it has OK from all).

TC

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Timeouts and Failures

23

2.
PREPA

RE-

OK/FA
IL

1.
PREPA

RE

TC

S1

S2

S3

Prepare Phase

4.
OK

3.
COMMIT

/A
BORT

TC

S1

S2

S3

Commit Phase

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Timeouts

24

1.
PREPA

RE

TC

S1

S2

S3

Prepare Phase

4.
OK

3.
COMMIT

/A
BO

RT

TC

S1

S2

S3

Commit Phase

Situation: S1 times out waiting for
PREPARE from TC for a transaction.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Timeouts

25

1.
PREPA

RE

TC

S1

S2

S3

Prepare Phase

4.
OK

3.
COMMIT

/A
BO

RT

TC

S1

S2

S3

Commit Phase

Situation: S1 times out waiting for
PREPARE from TC for a transaction.

Action: Safe for S1 to unilaterally
abort().

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Timeouts

26

Prepare Phase

4.
OK

3.
COMMIT

/A
BO

RT

TC

S1

S2

S3

Commit Phase
1.

PREPA
RE

TC

S1

S2

S3

2.
PREPA

RE-

OK/FA
IL

Situation: TC times out waiting for
PREPARE-OK/FAIL from S1.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Timeouts

27

Prepare Phase

4.
OK

3.
COMMIT

/A
BO

RT

TC

S1

S2

S3

Commit Phase
1.

PREPA
RE

TC

S1

S2

S3

2.
PREPA

RE-

OK/FA
IL

Situation: TC times out waiting for
PREPARE-OK/FAIL from S1.

Action: Safe for TC to initiate distributed
abort() by sending ABORT outcome.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Timeouts

28

Prepare Phase

3.
COMMIT

/A
BORT

TC

S1

S2

S3

1.
PREPA

RE

TC

S1

S2

S3

Situation: S1 times out waiting for outcome from TC.
Action: Is it safe for S1 to unilaterally commit or abort?

Commit Phase
2.

PREPA
RE-

OK/FA
IL

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Timeouts

29

Prepare Phase

S1

S2

S3

TC

S1

S2

S3

3.
COMMIT

/A
BORT

Situation: S1 times out waiting for outcome from TC.
• Case 1: S1 had sent PREPARE-FAIL in Prepare phase.
 Action: Safe for S1 to unilaterally abort().

TC

Commit Phase
1.

PREPA
RE

2.
PREPA

RE-

OK/FA
IL

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Timeouts

30

Prepare Phase

S1

S2

S3

1.
PREPA

RE

TC

S1

S2

S3

3.
COMMIT

/A
BORT

Situation: S1 times out waiting for outcome from.
• Case 2: S1 had sent PREPARE-OK in Prepare phase (S1 is said

to be in the uncertainty period).
Action: Can’t commit/abort. Runs a termination protocol.

Commit Phase

TC2.
PREPA

RE-

OK/FA
IL

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

31

3.
COMMIT/ABORT

TC

S1

S2

S3

1.
PREPARE

TC

S1

S2

S3

2.
PREPARE-

OK

Termination Protocol
• Wait for TC to come back (might take a while and recall Si hold locks!).
• Could also ask other participants whether they got outcome.

• If one did, they can all terminate the protocol accordingly.
• If none did (e.g., TC died or got partitioned right before it sent

outcome), then participants are BLOCKED till TC comes back.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Failures

• Similar analysis applies for failures.
• Some cases:

– if participant is not in uncertainty period, on recovery, can
decide what to do (unilaterally abort if no decision,
otherwise do what decision is.)

– if participant is in uncertainty period, it cannot decide on
its own, must invoke the termination protocol (which, as
before, may not actually terminate if TC fails).

32

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

2PC Limitations

33

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

2PC is Blocking

• A process can block indefinitely in its uncertainty period
until a TC or network failure is resolved.

• If TC is also a participant, then a single-site failure can
cause 2PC to block indefinitely!

• And it blocks while each shard server is holding locks,
preventing other transactions that don’t even interact with
the failed shard server from making progress!

• This is why 2PC is called a blocking protocol and cannot
be used as a basis for fault tolerance.

34

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

2PC is Expensive

• Time complexity: 3 message latencies on the critical path:
PREPARE → PREPARE-OK/FAIL → ABORT/COMMIT.

• Message complexity: common case for n participants + 1 TC:
3n messages.

• That’s expensive, esp. if shards are geo distributed.

• Optimizations, or adding an extra phase (3PC), cannot
address the blocking/performance problems of 2PC while
maintaining its semantic.

35

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Next Time

• Start talking about how to achieve fault
tolerance through replication.

• Unlike in sharded DBs, the problems
that arise in a replicated DB can be
cast as consensus.

• We will discuss Paxos, the best known
consensus protocol.

• So we’ll finally know, at least in
principle, how to construct our fuller
Web service architecture from Lecture
1 (took us long, ha?).

36

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Key Papers

• [Lampson-Sturgis-1979] Butler Lampson and Howard
Sturgis. Crash Recovery in a Distributed Data Storage
System. In Distributed Systems— Architecture and
Implementation, 1979.

37

