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Atomic Commitment Protocols
(Two-Phase Commit)
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Context

• We return to the distributed setting and discuss how  
distributed transactions are implemented.

• Why do we distribute and what are the main mechanisms?
– Scalability: sharding
– Fault tolerance: replication

• These mechanisms raise semantic challenges, which are     
addressed with rigorous protocols, such as:
– Two-phase commit: atomic commitment protocol for sharding.
– Paxos: a consensus protocol for replication.
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Outline

• Motivating example
• Two-phase commit (2PC)
• 2PC limitations
• Next time: Paxos
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Motivating Example
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Example: Web Service Architecture

6

● Web front end (FE), database server (DB), 
network.  FE is stateless, all state in DB.

● Suppose the FE implements a banking 
application (supporting account transfers, 
listings, and other functionality).

● Suppose the DB supports ACID 
transactions and the FE uses transactions.

Question: How do we make this:
- scalable?
- fault tolerant?
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Scalability: Sharding
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• FE and DB are both sharded:
○ FEs accept requests from 

end-users’ browsers and 
process them concurrently. 

○ DB is sharded, say by user 
IDs.

• Suppose each DB backend is on 
its own transactional (ACID).  
Then, FE issues transactions 
against one or more DB shards.

DB 
Shard 2

DB 
Shard 1

DB 
Shard n
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Fault Tolerance: Replication

8

● FE is stateless, so the fact that it is 
shared means it’s also replicated/fault 
tolerant.

● But DB is stateful, so active replication 
is needed for each shard.  Each shard 
is managed by a replica group, which 
cooperate to keep themselves up to 
date with respect to the updates. 

● FE sends requests for DB different 
shards go to different replica groups.

replica 
group for       
shard 1
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Challenges
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Question: What are the 
challenges of implementing 
ACID across the entire 
sharded & replicated, DB 
service?

replica 
group for       
shard 1
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Challenges due to Sharding

10

• Ignore replication.  Implementing 
ACID across all DB shard servers:

• Case 1: No transactions ever span 
multiple shards.  Easy: individual 
DB shard performs transaction.

• Case 2: Transactions can span 
multiple shards. Challenge: shards 
participating on any transaction 
need to agree on (1) whether or 
not to commit a transaction and (2) 
when to release the locks.   

DB 
Shard 2

DB 
Shard 1

DB 
Shard n
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Challenges due to Sharding (cont.)
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Example:
• Say FE service is a banking 

service that supports the 
TRANSFER and REPORT_SUM 
functions from the previous lecture.

• If the two accounts are stored on 
different shards, then the two 
operations (deduct from one and 
add to the other) will need to be 
executed either both or neither.

• Unfortunately, the two machines 
can fail, or decide to unilaterally 
abort, INDEPENDENTLY.

DB 
Shard 2

DB 
Shard 1

DB 
Shard n
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Challenges due to Sharding (cont.)
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Example (continued):
• So, you need an agreement 

protocol, and in this case the most 
suitable is an atomic commitment 
protocol (why?).

• Well-known atomic commitment 
protocol: two-phase commit.DB 

Shard 2
DB 

Shard 1
DB 

Shard n
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Challenges due to Replication

Ignore sharding.  Implementing ACID 
across all replicas of a given shard:

• Challenge: All replicas of the shard 
must execute all operations in 
the same order.

• If the operations are deterministic, 
then agreeing on the order of 
keeps the copies of the database 
on the different replicas will evolve 
identically, i.e., they will all be kept 
consistent.

13

Shard 1 / 
Replica A

Shard 1 / 
Replica B

Shard 1 / 
Replica C

replica 
group 
for       
Shard 1
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Challenges due to Replication (cont.)

Example:
● Suppose there are two transactions, 

each with a single operation, against 
the same cell in the database:

○ TX1: x += 1
○ TX2: x *= 2

● Internally, all three replicas are ACID 
databases, so they will serialize these 
transactions, e.g., either (TX1, TX2) 
OR (TX2, TX1).

● If Replica A processes (TX1, TX2) and 
Replica B processes (TX2, TX1), then 
after executing these transactions, the 
DB copies on the two replicas will 
diverge to x=8 and x=7, respectively.
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Shard 1 / 
Replica A

Shard 1 / 
Replica B

Shard 1 / 
Replica C

replica 
group 
for       
Shard 1
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Challenges due to Replication (cont.)

Example (continued):
• The problem of agreement on 

the order in which to execute 
operations can be cast as an 
instance of the consensus 
problem (why?).

• Well known consensus protocol: 
Paxos.

• We study this protocol next time.
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Shard 1 / 
Replica A

Shard 1 / 
Replica B

Shard 1 / 
Replica C

replica 
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Two-Phase Commit (2PC)
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Two-Phase Commit (2PC)
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2. 
PREPA

RE-

OK/FA
IL

1. 
PREPA

RE

TC

A

B

C

Prepare Phase

4. 
OK/FA

IL

3. 

COMMIT
/A

BORT

TC

A

B

C

Commit Phase
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2PC for Distributed Transactions

How 2PC integrates with WAL, 2PL that we studied for local transactions.

Here’s a rough description of a client lib for distributed transactions:

• begin(): Client lib begin()’s a transaction on each separate shard.  This 
produces a separate txID on each server (Tx.S1, Tx.S2…).

• As part of the distributed TX, the client sends the operation to the 
corresponding shard server. Say op1 goes to S1, op2 goes to S2.  Each 
server grabs local locks, adds op to their local WAL.

• abort(): Client sends the ABORT message to S1, S2, ….
18
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Commit Phase

2PC commit()

19

TC

S1

S2

S3

4. 
OK

3. 
COMMIT

/A
BORT

TC

S1

S2

S3

1. 
PREPA

RE(T
x.S

1)

either client lib 
or one of Si 
becomes TC.

Prepare Phase
2. 

PREPA
RE-

OK/FA
IL
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Commit Phase

2PC commit()

2. 
PREPA

RE-

OK/FA
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TC
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OK/FA
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COMMIT
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(while holding locks for Tx.S1)
2.1. can commit transaction Tx.S1?
2.2. write PREPAE-OK/FAIL to WAL.
2.3. send PREPARE-OK/FAIL to TC.
2.4. wait to hear response from TC.
(continue holding locks for Tx.S1)

1. 
PREPA

RE(T
x.S

1)
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2PC commit()

21

2. 
PREPA

RE-O
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Prepare Phase

4. 
OK

3. 
COMMIT

/A
BORT(
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.S
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TC

S1

S2

S3

Commit Phase

3.1. upon receipt of PREPARE-OK/FAIL or 
TIMEOUT from all participants:

• if all PREPARE-OK: outcome=COMMIT
• else: outcome=ABORT

3.2. write outcome to WAL (if COMMIT, 
flush).

3.3. send outcome to participants, client.
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2PC commit()
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2. 
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Commit Phase
(recall S1 is holding locks for Tx.S1)
4.1. enter COMMIT/ABORT in its WAL 

(if COMMIT, also flush).
4.2. if ABORT, revert Tx.S1 using WAL.
4.3. release all locks for Tx.S1.
4.4. send OK to TC (who will keep 

retrying to send outcome to 
participants until it has OK from all).

TC
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Timeouts and Failures
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Timeouts

24
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Situation: S1 times out waiting for 
PREPARE from TC for a transaction.
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Timeouts

25

1. 
PREPA

RE

TC

S1

S2

S3

Prepare Phase

4. 
OK

3. 
COMMIT
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Commit Phase

Situation: S1 times out waiting for 
PREPARE from TC for a transaction.

Action: Safe for S1 to unilaterally 
abort().
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Timeouts
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Prepare Phase

4. 
OK
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2. 
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Situation: TC times out waiting for 
PREPARE-OK/FAIL from S1.
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Timeouts

27

Prepare Phase
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Situation: TC times out waiting for 
PREPARE-OK/FAIL from S1.

Action: Safe for TC to initiate distributed 
abort() by sending ABORT outcome.
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Timeouts

28

Prepare Phase

3. 
COMMIT

/A
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TC

S1

S2

S3

1. 
PREPA

RE

TC

S1

S2

S3

Situation: S1 times out waiting for outcome from TC.
Action: Is it safe for S1 to unilaterally commit or abort?

Commit Phase
2. 
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RE-

OK/FA
IL
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Timeouts

29

Prepare Phase

S1

S2

S3

TC

S1

S2

S3

3. 
COMMIT

/A
BORT

Situation: S1 times out waiting for outcome from TC.
• Case 1: S1 had sent PREPARE-FAIL in Prepare phase.
     Action: Safe for S1 to unilaterally abort().

TC

Commit Phase
1. 

PREPA
RE

2. 
PREPA

RE-

OK/FA
IL
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Timeouts
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Prepare Phase

S1

S2

S3

1. 
PREPA

RE

TC

S1

S2

S3

3. 
COMMIT

/A
BORT

Situation: S1 times out waiting for outcome from.
• Case 2: S1 had sent PREPARE-OK in Prepare phase (S1 is said 

to be in the uncertainty period).
Action: Can’t commit/abort. Runs a termination protocol.

Commit Phase

TC2. 
PREPA

RE-

OK/FA
IL
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3. 
COMMIT/ABORT

TC

S1

S2

S3

1. 
PREPARE

TC

S1

S2

S3

2. 
PREPARE-

OK

Termination Protocol
• Wait for TC to come back (might take a while and recall Si hold locks!).
• Could also ask other participants whether they got outcome.

• If one did, they can all terminate the protocol accordingly.
• If none did (e.g., TC died or got partitioned right before it sent 

outcome), then participants are BLOCKED till TC comes back.
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Failures

• Similar analysis applies for failures.  
• Some cases:

– if participant is not in uncertainty period, on recovery, can 
decide what to do (unilaterally abort if no decision, 
otherwise do what decision is.)

– if participant is in uncertainty period, it cannot decide on 
its own, must invoke the termination protocol (which, as 
before, may not actually terminate if TC fails).
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2PC Limitations

33
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2PC is Blocking

• A process can block indefinitely in its uncertainty period 
until a TC or network failure is resolved.

• If TC is also a participant, then a single-site failure can 
cause 2PC to block indefinitely!

• And it blocks while each shard server is holding locks, 
preventing other transactions that don’t even interact with 
the failed shard server from making progress!

• This is why 2PC is called a blocking protocol and cannot 
be used as a basis for fault tolerance.

34
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2PC is Expensive

• Time complexity: 3 message latencies on the critical path: 
PREPARE → PREPARE-OK/FAIL → ABORT/COMMIT.

• Message complexity: common case for n participants + 1 TC: 
3n messages.

• That’s expensive, esp. if shards are geo distributed.

• Optimizations, or adding an extra phase (3PC), cannot 
address the blocking/performance problems of 2PC while 
maintaining its semantic.
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Next Time

• Start talking about how to achieve fault 
tolerance through replication.

• Unlike in sharded DBs, the problems 
that arise in a replicated DB can be 
cast as consensus.

• We will discuss Paxos, the best known 
consensus protocol.

• So we’ll finally know, at least in 
principle, how to construct our fuller 
Web service architecture from Lecture 
1 (took us long, ha?).
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Key Papers

• [Lampson-Sturgis-1979] Butler Lampson and Howard 
Sturgis. Crash Recovery in a Distributed Data Storage 
System.  In Distributed Systems— Architecture and 
Implementation, 1979.
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