
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

TRANSACTIONS: A PRIMER

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

• Today, we’ll break from the distributed setting to introduce
transactions, a core concept in state management, and
discuss how transactions are implemented in a
single-node system.

• Subsequently, we’ll return to the distributed setting and
describe how distributed transactions are implemented.

• As part of that, we will discuss atomic commitment and
consensus protocols.

3

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Why Transactions?

• A key component in any distributed application is a
(distributed) database that maintains shared state.

• Two challenges of building a non-distributed DB:
– Handling failures: failures are inevitable but they create

the potential for partial computations and correctness of
computations after restart.

– Handling concurrency: concurrency is vital for
performance (e.g., I/O is slow so need to overlap with
computation), but it creates races. Need to use some form
of synchronization to avoid those.

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Transaction

• Turing-award-winning idea.

• Abstraction provided to programmers that encapsulates
a unit of work against a database.

• Guarantees that the unit of work is executed atomically
in the face of failures and is isolated from concurrency.

5

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Transaction API

• Simple but very powerful:

6

txID = Begin() // Starts a transaction. Returns a unique ID for the
// transaction.

outcome= Commit(txID) // Attempts to commit a transaction; returns whether or
// not the commit was successful. If successful, all
// operations in the transaction have been applied to the
// DB. If unsuccessful, none of them has been applied.

Abort(txID) // Cancels all operations of a transaction and erases
// their effects on the DB. Can be invoked by the
// programmer or by the database engine itself.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Semantics

• One such set of guarantees is ACID:
– Atomicity: Either all operations in the transaction will

complete successfully (commit outcome), or none of
them will (abort outcome), regardless of failures.

– Isolation: A transaction’s behavior is not impacted by
the presence of concurrently executing transactions.

– Durability: The effects of committed transactions
survive failures.

7

• By wrapping a set of accesses in a transaction, the database
can hide failures and concurrency under meaningful guarantees.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Semantics

8

hide
failures

hides
concurrency

• One such set of guarantees is ACID:
– Atomicity: Either all operations in the transaction will

complete successfully (commit outcome), or none of
them will (abort outcome), regardless of failures.

– Isolation: A transaction’s behavior is not impacted by
the presence of concurrently executing transactions.

– Durability: The effects of committed transactions
survive failures.

8

• By wrapping a set of accesses in a transaction, the database
can hide failures and concurrency under meaningful semantics.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

9

TRANSFER(src, dst, x)
01 src_bal = Read(src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(src_bal, src)
05 dst_bal = Read(dst)
06 dst_bal += x
07 Write(dst_bal, dst)

Invocation: TRANSFER(A, B, 50)

REPORT_SUM(acc1, acc2)
01 acc1_bal = Read(acc1)
02 acc2_bal = Read(acc2)
03 Print(acc1_bal + acc2_bal)

Invocation: PRINT_SUM(A, B)

Without transactions: What could go wrong? Think of crashes or inopportune
interleavings between concurrent TRANSFER and REPORT_SUM processes.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

10

TRANSFER(src, dst, x)
01 src_bal = Read(src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(src_bal, src)
05 dst_bal = Read(dst)
06 dst_bal += x
07 Write(dst_bal, dst)

Invocation: TRANSFER(A, B, 50)

REPORT_SUM(acc1, acc2)
01 acc1_bal = Read(acc1)
02 acc2_bal = Read(acc2)
03 Print(acc1_bal + acc2_bal)

Invocation: PRINT_SUM(A, B)

With transactions: How to fix these challenges with transactions?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example

11

TRANSFER(src, dst, x)
00 txID = Begin()
01 src_bal = Read(txID, src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(txID, src_bal, src)
05 dst_bal = Read(txID, dst)
06 dst_bal += x
07 Write(txID, dst_bal, dst)
09 return Commit(txID)
10 Abort(txID)

11 return FALSE

REPORT_SUM(acc1, acc2)
00 txID = Begin()
01 acc1_bal = Read(txID, acc1)
02 acc2_bal = Read(txID, acc2)
03 Print(acc1_bal + acc2_bal)
04 Commit(txID)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Implementing Transactions
(Single Node)

• Atomicity and Durability:
– Operations included in a transaction either all succeed or none succeed

despite temporary failures of the process/machine running the DB
(assume disk doesn’t fail!). If they succeed, they persist despite failures.

– Key mechanism is write-ahead logging: log to disk sufficient information
about each operation before you apply it to the database, such that in the
event of a failure in the middle of a transaction, you can undo the effects
of its operations on the database.

• Isolation:
– Operations included in a transaction all witness the database in a

coherent state, independent of other transactions.
– Key mechanism is locking: DB acquires locks on all rows read or written

and maintains them until the end of the transaction.
12

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Mechanism Descriptions
[Franklin-1992]

• Two-phase locking (2PL):
https://columbia.github.io/ds1-class/lectures/06-local-tran
sactions-2pl.pdf.

• Write-ahead logging (WAL):
https://columbia.github.io/ds1-class/lectures/06-local-tran
sactions-wal.pdf.

13

https://columbia.github.io/ds1-class/lectures/06-local-transactions-2pl.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-2pl.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two-Phase Locking (2PL)

14

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Lock-Based Concurrency Control

15

TRANSFER(src, dst, x)
00 txID = Begin()
01 src_bal = Read(txID, src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(txID, src_bal, src)
05 dst_bal = Read(txID, dst)
06 dst_bal += x
07 Write(txID, dst_bal, dst)
09 return Commit(txID)
10 Abort(txID)
11 return FALSE

REPORT_SUM(acc1, acc2)
00 txID = Begin()
01 acc1_bal = Read(txID, acc1)
02 acc2_bal = Read(txID, acc2)
03 Print(acc1_bal + acc2_bal)
04 Commit(txID)

Questions: What locks to
take, when, and for how
long to keep them?

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Option 1: Global Lock for Entire
Transaction

16

TRANSFER(src, dst, x)
00 txID = Begin()
01 src_bal = Read(txID, src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(txID, src_bal, src)
05 dst_bal = Read(txID, dst)
06 dst_bal += x
07 Write(txID, dst_bal, dst)
09 return Commit(txID)
10 Abort(txID)
11 return FALSE

← lock(table)

← unlock(table)
← unlock(table)

Problem?

REPORT_SUM(acc1, acc2)
00 txID = Begin()
01 acc1_bal = Read(txID, acc1)
02 acc2_bal = Read(txID, acc2)
03 Print(acc1_bal + acc2_bal)
04 Commit(txID)

← lock(table)

← unlock(table)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

17

TRANSFER(src, dst, x)
00 txID = Begin()
01 src_bal = Read(txID, src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(txID, src_bal, src)
05 dst_bal = Read(txID, dst)
06 dst_bal += x
07 Write(txID, dst_bal, dst)
09 return Commit(txID)
10 Abort(txID)
11 return FALSE

REPORT_SUM(acc1, acc2)
00 txID = Begin()
01 acc1_bal = Read(txID, acc1)
02 acc2_bal = Read(txID, acc2)
03 Print(acc1_bal + acc2_bal)
04 Commit(txID)

← lock(table)

← unlock(table)

← lock(table)

← unlock(table)

← unlock(table)

Problem: poor performance.
• Serializes all transactions

against that table, even if
they don’t conflict.

Option 1: Global Lock for Entire
Transaction

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

18

TRANSFER(src, dst, x)
00 txID = Begin()
01 src_bal = Read(txID, src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(txID, src_bal, src)
05 dst_bal = Read(txID, dst)
06 dst_bal += x
07 Write(txID, dst_bal, dst)
09 return Commit(txID)
10 Abort(txID)
11 return FALSE

← lock(src)

Problem?

Option 2: Row-Level Locks,
Release After Access

← unlock(src)
← lock(dst)

← unlock(dst)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

19

TRANSFER(src, dst, x)
00 txID = Begin()
01 src_bal = Read(txID, src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(txID, src_bal, src)
05 dst_bal = Read(txID, dst)
06 dst_bal += x
07 Write(txID, dst_bal, dst)
09 return Commit(txID)
10 Abort(txID)
11 return FALSE

← lock(src)

Problem: insufficient isolation.
• Allows other transactions to

read src before dst is updated.

Option 2: Row-Level Locks,
Release After Access

← unlock(src)
← lock(dst)

← unlock(dst)

REPORT_SUM(src, dst)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two-Phase Locking (2PL)

20

• Phase 1: acquire locks
• Phase 2: release locks
• You cannot get more locks

after you release one.
– Typically implemented

by her releasing locks
automatically at end of
commit()/abort().

TRANSFER(src, dst, x)
00 txID = Begin()
01 src_bal = Read(txID, src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(txID, src_bal, src)
05 dst_bal = Read(txID, dst)
06 dst_bal += x
07 Write(txID, dst_bal, dst)
09 return Commit(txID)
10 Abort(txID)
11 return FALSE

← lock(src)

← lock(dst)

← unlock(src,dst)
← unlock(src,dst)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two-Phase Locking (2PL)

21

• Phase 1: acquire locks
• Phase 2: release locks
• You cannot get more locks

after you release one.
– Typically implemented

by her releasing locks
automatically at end of
commit()/abort().

• Problems?

TRANSFER(src, dst, x)
00 txID = Begin()
01 src_bal = Read(txID, src)
02 if (src_bal > x):
03 src_bal -= x
04 Write(txID, src_bal, src)
05 dst_bal = Read(txID, dst)
06 dst_bal += x
07 Write(txID, dst_bal, dst)
09 return Commit(txID)
10 Abort(txID)
11 return FALSE

← lock(src)

← lock(dst)

← unlock(src,dst)
← unlock(src,dst)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

2PL Can Lead to Deadlocks

tx1: lock(foo)
tx1: lock(bar)

22

tx2: lock(bar)
tx2: lock(foo)

• tx1 might get the lock for foo, then tx2 gets lock for bar,
then both transactions wait trying to get the other lock.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Preventing Deadlock

23

• Option 1: Each transaction gets all its locks at once.
– Not always possible (e.g., think foreign key-based navigation

in a DB system: rows to lock are determined at runtime).

• Option 2: Each transaction gets its locks in predefined order.
– As before, not always possible.

• Typically: detect deadlock and abort some transactions as
needed to break the deadlock.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Deadlock Detection and Resolution

24

• Construct a waits-for graph:
– Each vertex in the graph is a transaction.
– There is an edge T1→ T2 if T1 is waiting for a lock T2 holds.

• There is a deadlock iff there is a cycle in the waits-for graph.

• To resolve, the database unilaterally calls Abort() on one
or a few ongoing transactions to break the cycle.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

To Remember

• Remember this point: For concurrently control, a
database may decide on its own to kill ongoing client
transactions!

• So Abort is a really critical function, which helps
address both concurrency control issues and
atomicity issues.

• But how exactly to Abort()? Answer: WAL.

25

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Write-Ahead Logging (WAL)

26

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

WAL Slides

• https://columbia.github.io/ds1-class/lectures/06-local-trans
actions-wal.pdf.

27

https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf
https://columbia.github.io/ds1-class/lectures/06-local-transactions-wal.pdf

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Next Classes

28

• Return to the distributed setting to discuss:
– How to implement distributed transactions in a sharded

database (for scalability): atomic commitment protocols.
– How to implement distributed transactions in a replicated

database (for fault tolerance): consensus protocols.
– Several case studies on how to leverage these protocols

in practice: Spanner, Chubby, Bigtable.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Key Papers

• [Franklin-1992] Michael Franklin. Concurrency Control and
Recovery.” In Proceedings of ACM SIGMOD, 1992.

29

