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Agreement in Distributed Systems
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Agreement

• A set of nodes in a DS often need to agree on something: 
a decision, the value of a variable, order of events,...

• Examples?

3



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Agreement

• A set of nodes in a DS often need to agree on something:    
a decision, the value of a variable, order of events,...

• Examples:
– Lamport’s distributed mutual exclusion protocol: nodes agree on 

who has the lock at any time.
– ATM example from RPC: ATM front-end and banking service   

need to agree on whether to commit or abort my cash withdrawal.
– In HW2, you design a replication protocol where primary and 

secondary replicas of a key-value store agree on the sequence    
of values written at each key.
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Two Types of Agreement

1. Consensus: participants need to agree on a value, but 
they are willing and capable to accept any value.

2. Atomic commitment: participants need to agree on a 
value, but they have specific constraints on whether they 
can accept any particular value.

• Examples:
– Decision of when to meet is likely a ??? problem.
– Decision of which zoom link to meet at is likely a ??? problem.

5



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Two Types of Agreement

1. Consensus: participants need to agree on a value, but 
they are willing and capable to accept any value.

2. Atomic commitment: participants need to agree on a 
value, but they have specific constraints on whether they 
can accept any particular value.

• Examples:
– Decision of when to meet is likely atomic commitment.
– Decision of which zoom link to meet at is likely consensus.

6



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Examples – Which Type is Each?

• Lamport’s distributed mutual exclusion protocol: nodes 
agree on who has the lock at any time.  ← ???

• ATM example from RPC lecture: ATM front-end and banking 
service need to agree on whether to commit or abort my 
cash withdrawal. ← ???

• In HW2, you will design a replication protocol where primary 
and secondary replicas of a key-value store agree on the 
sequence of values written at each key. ← ???
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Examples – Which Type is Each?

• Lamport’s distributed mutual exclusion protocol: nodes 
agree on who has the lock at any time. ← Consensus

• ATM example from RPC lecture: ATM front-end and banking 
service need to agree on whether to commit or abort my 
cash withdrawal.  ← Atomic commitment

• In HW2, you will design a replication protocol where primary 
and secondary replicas of a key-value store agree on the 
sequence of values written at each key.  ← Consensus
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Agreement Is “Hard”
• In the asynchronous system model, it is impossible to 

guarantee agreement in finite time under all failure scenarios.
• The consensus problem can be approached in practice:   

there exist protocols to solve consensus under vast majority 
of plausible failure scenarios.

• That’s not the case for atomic commitment: if each participant 
has their own constraints, then you can’t tolerate any one 
participant’s failure.

• In that sense, atomic commitment is “even harder” than 
consensus.
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Remainder of This Class

Focus on consensus:
• Justify impossibility intuitively with a standard example:   

the two generals problem.
• Formulate the consensus problem more abstractly.
• Discuss the 1985 impossibility result by Fischer, Lynch, 

and Paterson (FLP) that showed that consensus is 
fundamentally impossible to guarantee in asynchronous 
systems.
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The Two-Generals Problem

• Two armies, A1 and A2, want to 
attack a fortified city, B.

• Both armies must attack at the 
same time to succeed.

• The armies can communicate 
through messengers, but those 
can be captured or delayed, so 
msg. delivery is unreliable.
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The Two-Generals Problem

Three requirements for a solution:
1. Consistency: both armies decide 

to attack at the same time.
2. Termination: each army decides 

to attack after a finite number of 
messages.

3. Validity: the time to attack was 
proposed by one of the armies.
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The Two-Generals Problem

Three requirements for a solution:
1. Consistency: both armies decide 

to attack at the same time.
2. Termination: each army decides 

to attack after a finite number of 
messages.

3. Validity: the time to attack was 
proposed by one of the armies.
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Question: What should be 
the protocol to achieve 

these properties?
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Protocol:
– Pre-agree on either A1 or A2 generals 

proposing the time to attack.  Say A1 
is the one to propose.  A2 will be the 
one to accept.

– A1 sets the time of attack to 
communication delay + some extra 
time to account for A2’s preparation for 
response.

14

Case 1: Known Delays, Reliable Delivery
(synchronous system model)
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Protocol:
– Pre-agree on either A1 or A2 generals 

proposing the time to attack.  Say A1 
is the one to propose.  A2 will be the 
one to accept.

– A1 sets the time of attack to 
communication delay + some extra 
time to account for A2’s preparation for 
response.
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So problem is solvable in synchronous networks.

Case 1: Known Delays, Reliable Delivery
(synchronous system model)
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Case 2: Unknown Delays / Unreliable Delivery
(asynchronous system model)

• Achieving consistency, termination, and validity in the 
asynchronous model is provably impossible.

• Sketch:
– Need Acks in the protocol.
– But Acks can be delayed/lost too.
– Therefore I need more Acks.
– Therefore, one general can never be sure the other will attack.
– So they can’t be guaranteed to reach agreement.
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Consensus Problem Formulation

• A collection of processes, Pi.

• They propose values Vi (e.g., time to attack, client 
update, lock requests, …), and send messages to 
others to exchange proposals.

• Different processes may propose different values, 
and they can all accept any of the proposed 
values.

• Only one of the proposed values, V, will be 
“chosen” and eventually all processes learn that 
one chosen value.

17
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Consensus Problem Formulation

• A collection of processes, Pi.

• They propose values Vi (e.g., time to attack, client 
update, lock requests, …), and send messages to 
others to exchange proposals.

• Different processes may propose different values, 
and they can all accept any of the proposed 
values.

• Only one of the proposed values, V, will be 
“chosen” and eventually all processes learn that 
one chosen value.
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Consensus Problem Formulation

• Three requirements for a solution: 
– consistency: once a value is chosen, the chosen value 

of all working processes is the same.  
– termination: eventually they agree on a value (a.k.a., a 

value is “chosen”).
– validity: the chosen value was proposed by one of the 

nodes.
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Consensus Is Pervasive in DS
• Agreeing on order of updates to replicated DB.

– One solution is primary/secondaries 
replication (like you have in HW2).

• There are several replicas, one is primary.  
• Reads and writes are accepted only by 

primary, which establishes an order for all 
operations before forwarding them to 
secondaries.

• Multiple variants exist, but they all reduce            
to one core consensus question: how to 
choose the primary? A.k.a. leader election.
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Consensus Is Pervasive in DS

• Grabbing a lock for mutual exclusion.
– Previously we looked at a specific algorithm for 

distributed mutual exclusion.  At its core, it’s a 
consensus problem, which can be addressed with a 
generic consensus algorithm.

• Reliable and ordered multicast: all members of a group 
agree on a set and order of messages to receive.

• … Many other examples.  One protocol that solves 
consensus can solve them all!
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The FLP Impossibility Result

• In an asynchronous system (unordered messages, 
unbounded communication delays, unbounded 
processing delays), no protocol can guarantee 
consensus within a finite amount of time if even a 
single process can fail by stopping.  [FLP-1985]

• But, there are approximate solutions to the problem that 
solve consensus in all but the exceedingly rare events.  
We’ll look at such a protocol, Paxos, in future lectures.
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When Can Consensus Be Guaranteed?

• Determining factors:
– Processors: synchronous vs. asynchronous.
– Communication: bounded vs. unbounded.
– Messages: ordered vs. unordered.
– Transmission: broadcast vs. point-to-point.
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Can’s and Cannot’s

24Table credit: [Turek-Shasha-1992]
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synchronous 
system (not 
realistic):  yes.

asynchronous 
system (realistic): 
mostly no.

Table credit: [Turek-Shasha-1992]

Can’s and Cannot’s
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Next Classes
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Today: A parenthesis on local transactions
Then: Atomic commitment protocols
Then: Consensus protocols
Finally: Case studies from industry
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Key Papers

• [FLP-1985] Michael Fischer, Nancy Lynch, and Michael 
Paterson. Impossibility of Distributed Consensus with One 
Faulty Process. In Journal of the ACM, 1985.

• [Turek-Shasha-1992] John Turek, Dennis Shasha.  The 
many faces of consensus in distributed systems. In IEEE 
Computer, 1992.
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