
Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Systems 1

CUCS Course 4113
https://systems.cs.columbia.edu/ds1-class/

Instructor: Roxana Geambasu
1

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Time and Synchronization

2

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Context

• We looked at RPC, a key concept in DS, and saw how
failures creep up into semantics and challenge
coordination.

• We now look at another key concept in DS, time, and
will see how unbounded network delays (a.k.a.
network asynchrony) creep up into semantics and
challenge coordination.

3

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Outline

• Physical clocks
– Synchronization challenges and protocols

• Logical clocks
– Lamport clock protocol

• Examples
– Global log for debugging
– Mutual exclusion

4

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Why Is Time Important?

5

• Needed for synchronization and coordination.
• Examples:

– Mutual exclusion
– Barrier
– A running (toy) example: distributed debugging based on

logs

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Distributed Debugging

6

…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server) M3 (DB server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Distributed Debugging

7

…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

SQL
Injection!

e.g., SELECT * FROM Users
WHERE id=`123`; DELETE *
FROM Users

M3 (DB server)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

SQL
Injection!

e.g., SELECT * FROM Users
WHERE id=`123`; DELETE *
FROM Users

Example: Distributed Debugging

Bug!

e.g., improper sanitization

M3 (DB server)

8

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Distributed Debugging

9

…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

…
M1: recv from cli
M1: send to M2
M2: recv from M1
M2: send to M3
M3: recv from M2
M3: SQL query
M3: send to M2
M2: recv from M3
M2: send to M1
M1: recv from M2
M1: send to cli
…

Global log (admin)
M3 (DB server)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Distributed Debugging

10

…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

…
M1: recv from cli
M1: send to M2
M2: recv from M1
M2: send to M3
M3: recv from M2
M3: SQL query
M3: send to M2
M2: recv from M3
M2: send to M1
M1: recv from M2
M1: send to cli
…

Global log (admin)

Question: How to create the global log?

M3 (DB server)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Example: Distributed Debugging

…
t1 recv from cli
…
t2 send to M2
…
t10 recv from M2
…
t11 send to cli
…

M1 (front end) M2 (app server)
…
t3 recv from M1
…
t4 send to M3
…
t8 recv from M3
…
t9 send to M1
…

…
t5 recv from M2
…
t6 SQL query
…
t7 send to M2
…

…
t1 M1: recv from cli
t2 M1: send to M2
t3 M2: recv from M1
t4 M2: send to M3
t5 M3: recv from M2
t6 M3: SQL query
t7 M3: send to M2
t8 M2: recv from M3
t9 M2: send to M1
t10 M1: recv from M2
t11 M1: send to cli
…

Global log (admin)

Question: How to create the global log?
Answer: Use physical clock?

11

M3 (DB server)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Problem: Clock Synchronization Is Hard

• Machines have different physical clocks, which are
never identical from a structural perspective.
– E.g. for quartz clocks: the crystals differ inside the clocks;

surrounding electro-magnetic field, temperature affect
oscillators.

• Synchronizing clocks to reset their drift involves the
network, whose delays can vary over time and in
general, cannot be upper bounded.

12

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Asynchronous Networks

13

• In real settings, we have to
model the network as
asynchronous, meaning:
– a lower bound, “min”
– a “modus operandi”
– BUT no hard upper bound.

• Some algorithms assume a known upper bound
(a.k.a., synchronous network model), but this is
not realistic (e.g., buggy router, queuing, attacks).

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Asynchronous Systems

14

• Not only networks behave asynchronously.
• Computation behaves similarly in real life (there is no

guaranteed execution time for any operation, it all
depends on how loaded the machine is for example).

• Asynchronous systems are those where both the
network and the computation are modeled as
asynchronous. Remember this concept because we’ll
return to it profusely in this class.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Synchronization Protocols

15

• Best-known algorithm is NTP (network time protocol,
original paper [Mills-1991]).

• Synchronizes to reference clocks (Greenwich for the
public Internet).

• Over WAN, synchronization is within tens of ms.
Great to rely on for human coordination, but
problematic for machine coordination.

• We’ll build up to the basis for the NTP protocol.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Notation

16

Master

Clients

t

Ci(t)

• Master clock keeps time t, which is assumed
to be correct.

• Client clocks Ci that we want to synchronize
to master keep clocks Ci(t).

• We want two properties:
– Clock consistency (internal): |Ci(t)–Cj(t)|<d1 for

all i, j
– Clock accuracy (external): |Ci(t)–t|<d2 for all i

• External implies internal.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 1: Broadcast-Based Sync

17

• Master broadcasts t to all.
• Client i sets its clock to (t+min) when it

gets a message at some time t’. So,
Ci(t’) := t+min.

• If we assume a “max” delay, then the
error between any client and the master
is bounded by (max-min), which can be
proven optimal.

Master

t

Ci(t)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 2: Interrogation-Based Sync

18

• Client i sends query to master
and saves the local time, T0.

• Upon receipt of msg, master
takes the local time, T1, and
replies with it to client.

• Upon receipt of master reply,
querier takes its local time, T2,
and updates its clock.
Question: TO WHAT VALUE
to ensure minimal error?

client i

T1

W
ha

t’s
 th

e
tim

e?
α β

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 2: Interrogation-Based Sync

19

• Client i sends query to master
and saves the local time, T0.

• Upon receipt of msg, master
takes the local time, T1, and
replies with it to client.

• Upon receipt of master reply,
querier takes its local time, T2,
and updates its clock.
Question: TO WHAT VALUE
to ensure minimal error?

client i

T1

W
ha

t’s
 th

e
tim

e?
α β

Cmaster(T2)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 2: Interrogation-Based Sync

20

client i

T1

T1

β

Cmaster(T2) Assume min=0.
Extreme Case 1: α=0
• Then, β=(T2-T0).
• Cmaster(T2)=T1+(T2-T0)
• In this case, client i would

ideally set its time to
T1+(T2-T0) for zero error.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 2: Interrogation-Based Sync

21

client i

T1

T1α

Cmaster(T2) Assume min=0.
Extreme Case 2: β=0:
• Then, α=(T2-T0).
• Cmaster(T2)=T1.
• In this case, client i would

ideally set its time to T1
for zero error.

Problem: Client cannot differentiate between Extreme Cases. So,
best it can do is to set its time to the midway.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 2: Interrogation-Based Sync

22

The client set its local time to
the midpoint between these
two extremes, which is
measurable:

Ci(T2) := T1 + (T2–T0)/2

client i

T1

W
ha

t’s
 th

e
tim

e?
α β

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 2: Interrogation-Based Sync

23

The client set its local time to
the midpoint between these
two extremes, which is
measurable:

Ci(T2) := T1 + (T2–T0)/2

What’s the max error?client i

T1

W
ha

t’s
 th

e
tim

e?
α β

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 2: Interrogation-Based Sync

24

The client set its local time to
the midpoint between these
two extremes, which is
measurable:

Ci(T2) := T1 + (T2–T0)/2
max error = (T2-T0)/2

client i

T1

W
ha

t’s
 th

e
tim

e?
α β

Max error is achieved in
Extreme Cases 1 and 2, when
Ci is either behind or ahead.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Protocol 2: Interrogation-Based Sync

25

querier i

T1

W
ha

t’s
 th

e
tim

e?

• Preceding analysis ignores min.
• Also ignores drift of client clock

during T0 to T2 period. If you
include it, the equation gets a bit
more complicated.

• It also ignores local delays, e.g.,
T2 is taken but Ci is updated later.
If you include this, then things get
even more complicated.

• More complications in a real
protocol like NTP arise from
ensuring scalability, FT for master.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Implications

26

• Error diminishes as the measurement trial RTT approaches 2*min.
– is a probabilistic tradeoff
– can require measurements to be close to RTT to “accept” them and

achieve rapport – increase number of trials necessary, but get tight
error bounds

– can be sloppy and take any measurement – decreases number of
trials, but get worse error bounds

• Thus, network delay impacts clock synchronization and
prevents it from ever being perfect.
– NTP over WAN typically has an error of tens of milliseconds.
– GPS synchronization is much tighter (low min, alpha, beta), but still non zero.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Outline

• Physical clocks
– Synchronization challenges and protocols

• Logical clocks
– Lamport clock protocol

• Examples
– Global log for debugging
– Mutual exclusion

27

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Logical Clocks

28

• Leslie Lamport, parent of DS, observed that most coordination in
distributed systems (e.g., for mutual exclusion, barriers, complete
event log) doesn’t require a global notion of real time!

• Most coordination only needs a global order of discrete events.

• E.g., in the distributed debugging example, you only need order
between dependent events that could possibly have caused the
failure.

• Achieving a global order of events is easier to guarantee than
achieving zero-error real-time synchronization.

• This is why many foundational DS protocols rely on logical clocks.

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Logical Clock Requirements

Lamport posited two requirements for logical clocks:

1. They must preserve program order (i.e., the order of events
in one process needs to be preserved by the logical clock)

2. They must preserve message order (i.e., a message sent
event always needs to precede that message’s receipt event
in the logical clock).

These two requirements capture all internal causality between
any two events in the system.

29

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Logical Clock Synchronization Protocol
• Lamport clock protocol [Lamport-1978].
• Setup:

– Process = individual node in a distributed system
– Processes communicate by messages (e.g., RPCs)
– Events can be messages or system-specific events (e.g., write to

file, read from file, whatever makes sense for the specific
distributed system).

– View each process in the distributed system as a state machine:
has some initial state, events cause it to move from one state to
another.

30

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Lamport Clock Protocol
• Each process Pi maintains a local

counter, Ci

• Each process Pi increments Ci between
any two successive events

• Each process piggybacks timestamp Tm
on a message it sends out, where Tm is
value of Ci at the time of sending m

• Upon receiving m at process Pj:
– Pj sets its counter Cj to max(Cj, Tm+1)
– The receipt of m is a separate event that

then separately advances Cj (i.e., Cj++)31

Node P
i
’s state machine:

 On local event:
 - C

i
++

 On message send:
 - Piggyback C

i
 to msg.

 - C
i
++

 On message(T
m

) receive:
 - C

i
= max(C

i
, T

m
+1)

 - C
i
++

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Getting a Global Order

• The preceding protocol gives a partial order of all causally
dependent events.

• Often we need a global order on which all processes agree.

• To obtain that, use logical clock to set the order. Use process
IDs as the tie breaker.
– E.g.: use (Logical timestamp).(process ID) as your

timestamp.

32

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Distributed Debugging Example

33Breakout Activity!

Global Log

TODO: Timestamp
the ops in each
machine’s log
using logical
clocks, then

assemble the
global log by
merge-sorting

them.
(assume Ci=0
initially)

0.1 op11 rcv cli
1.1 op12 …
?? op13 snd M2
?? op14 …
?? op15 rcv M2
?? op16 …
?? op17 snd cli
…

M1 (front end) M3 (DB)
?? op21 rcv M1
?? op22 …
?? op23 ...
?? op24 snd M3
?? op25 …
?? op26 …
?? op27 …
?? op28 …
?? op26 rcv M3
?? op27 …
?? op28 snd M1
…

0.3 op31 …
?? op32 …
?? op33 …
?? op34 rcv M2
?? op35 SQL
?? op36 …
?? op37 snd M2
…

C1

0
1
2
?
?
?
?
?

C2

0
?
?
?
?
?
?
?
?
?
?
?

C3

0
?
?
?
?
?
?
?

M2 (app server)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Activity (10 minutes)

34

● Assign logical timestamps to operations in each log,
then sort the operations by timestamp in global log. A
few entries have already been filled in as examples.

● Hint: As you go through the operations, keep track of
the logical clock value at each machine, C1-3. Use
the Lamport clock protocol to update the clocks (the
algorithm is pasted on the right).

● Hint: It may be useful to first draw happens-before
arrows between message sends and their receipts so
you know when clock synchronization happens.

● Hint: Use a totally ordered clock: timestamp is Ci.i.

Node P
i
’s state machine:

 On local event:
 - C

i
++

 On message send:
 - Piggyback C

i
 to msg.

 - C
i
++

 On message receive:
 - C

i
= max(C

i
, T

m
+1)

 - C
i
++

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Student Worksheet

35

0.1 op11 rcv cli

… enter all events in
order of their logical
timestamp

Global Log

0.1 op11 rcv cli
1.1 op12 …
?? op13 snd M2
?? op14 …
?? op15 rcv M2
?? op16 …
?? op17 snd cli
…

M1 (front end) M3 (DB)
3.2 op21 rcv M1
?? op22 …
?? op23 ...
?? op24 snd M3
?? op25 …
?? op26 …
?? op27 …
?? op28 …
?? op26 rcv M3
?? op27 …
?? op28 snd M1
…

0.3 op31 …
?? op32 …
?? op33 …
?? op34 rcv M2
?? op35 SQL
?? op36 …
?? op37 snd M2
…

C1

0
1
2
?
?
?
?
?

C2

0
?
?
?
?
?
?
?
?
?
?
?

C3

0
?
?
?
?
?
?
?

M2 (app server)

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Solution

36

0.1 op11 rcv cli
0.3 op31 …
1.1 op12 …
1.3 op32 …
2.1 op13 snd M2
2.3 op33 …
3.1 op14 …
3.2 op21 rcv M1
4.2 op22 …
5.2 op23 …
6.2 op24 snd M3
7.2 op25 …
7.3 op34 rcv M2
8.2 op26 …
8.3 op35 SQL
9.2 op27 …
9.3 op36 …
10.2 op28 …
10.3 op37 snd M2
11.2 op26 rcv M3
12.2 op27 …
13.2 op28 snd M1
14.1 op15 rcv M2
15.1 op16 …
16.1 op17 snd cli
…

Global Log

0.1 op11 rcv cli
1.1 op12 …
2.1 op13 snd M2
3.1 op14 …
14.1 op15 rcv M2
15.1 op16 …
16.1 op17 snd cli
…

M1 (front end) M3 (DB)
3.2 op21 rcv M1
4.2 op22 …
5.2 op23 ...
6.2 op24 snd M3
7.2 op25 …
8.2 op26 …
9.2 op27 …
10.2 op28 …
11.2 op26 rcv M3
12.2 op27 …
13.2 op28 snd M1
…

0.3 op31 …
1.3 op32 …
2.3 op33 …
7.3 op34 rcv M2
8.3 op35 SQL
9.3 op36 …
10.3 op37 snd M2
…

C1

0
1
2
3
4

15
16
17

C2

0
4
5
6
7
8
9

10
11
12
13
14

C3

0
1
2
3
8
9

10
11

M2 (app server)

2

6

10
13

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Another Example: Mutual Exclusion

• https://columbia.github.io/ds1-class/lectures/04-clocks-mut
ex-example-ppt.pdf

• slides 2 and 13-23

37

https://columbia.github.io/ds1-class/lectures/04-clocks-mutex-example-ppt.pdf
https://columbia.github.io/ds1-class/lectures/04-clocks-mutex-example-ppt.pdf

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Pluses and Minuses of Lamport Clocks

+ Respect causality, which can address many coordination
problems in distributed systems.
- Capturing causality is sometimes insufficient, as there can be
events outside the system that have causal influence on the
evolution of the system. The ordering doesn’t capture these
relationships.
- Lamport clock ordering doesn’t actually imply causality/influence,
just potential influence. Hence, the order can be too much order,
affecting performance/scalability.

38

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Next Classes

• Diverge a bit from Lamport clocks, but we’ll return.

• Essentially, Lamport clocks are used in many coordination
protocols, including protocols that solve consensus, a
key coordination problem in DS with many instantiations.

• We next formulate the consensus and related problems
and we’ll return to Lamport clocks when we discuss the
solution.

39

Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Key Papers

• [Mills-1991] David Mills. Internet Time Synchronization: the
Network Time Protocol. In IEEE Transactions on
Communications, 1991.

• [Lamport-1978] Leslie Lamport. Time, Clocks, and the
Ordering of Events in a Distributed System. In
Communications of the ACM, 1978.

40

