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Time and Synchronization
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Context

• We looked at RPC, a key concept in DS, and saw how 
failures creep up into semantics and challenge 
coordination.

• We now look at another key concept in DS, time, and 
will see how unbounded network delays (a.k.a. 
network asynchrony) creep up into semantics and 
challenge coordination.
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Outline

• Physical clocks
– Synchronization challenges and protocols

• Logical clocks
– Lamport clock protocol

• Examples
– Global log for debugging
– Mutual exclusion
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Why Is Time Important?
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• Needed for synchronization and coordination.
• Examples:

– Mutual exclusion
– Barrier
– A running (toy) example: distributed debugging based on 

logs
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Example: Distributed Debugging
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…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server) M3 (DB server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…
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Example: Distributed Debugging

7

…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

SQL 
Injection!

e.g., SELECT * FROM Users 
WHERE id=`123`; DELETE * 
FROM Users

M3 (DB server)
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…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

SQL 
Injection!

e.g., SELECT * FROM Users 
WHERE id=`123`; DELETE * 
FROM Users

Example: Distributed Debugging

Bug!

e.g., improper sanitization

M3 (DB server)
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Example: Distributed Debugging

9

…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

…
M1: recv from cli
M1: send to M2
M2: recv from M1
M2: send to M3
M3: recv from M2
M3: SQL query
M3: send to M2
M2: recv from M3
M2: send to M1
M1: recv from M2
M1: send to cli
…

Global log (admin)
M3 (DB server)
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Example: Distributed Debugging
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…
recv from cli
…
send to M2
…
recv from M2
…
send to cli
…

M1 (front end) M2 (app server)
…
recv from M1
…
send to M3
…
recv from M3
…
send to M1
…

…
recv from M2
…
SQL query
…
send to M2
…

…
M1: recv from cli
M1: send to M2
M2: recv from M1
M2: send to M3
M3: recv from M2
M3: SQL query
M3: send to M2
M2: recv from M3
M2: send to M1
M1: recv from M2
M1: send to cli
…

Global log (admin)

Question: How to create the global log?

M3 (DB server)
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Example: Distributed Debugging

…
t1 recv from cli
…
t2 send to M2
…
t10 recv from M2
…
t11 send to cli
…

M1 (front end) M2 (app server)
…
t3 recv from M1
…
t4 send to M3
…
t8 recv from M3
…
t9 send to M1
…

…
t5 recv from M2
…
t6 SQL query
…
t7 send to M2
…

…
t1 M1: recv from cli
t2 M1: send to M2
t3 M2: recv from M1
t4 M2: send to M3
t5 M3: recv from M2
t6 M3: SQL query
t7 M3: send to M2
t8 M2: recv from M3
t9 M2: send to M1
t10 M1: recv from M2
t11 M1: send to cli
…

Global log (admin)

Question: How to create the global log?
Answer: Use physical clock?

11

M3 (DB server)
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Problem: Clock Synchronization Is Hard

• Machines have different physical clocks, which are 
never identical from a structural perspective.
– E.g. for quartz clocks: the crystals differ inside the clocks; 

surrounding electro-magnetic field, temperature affect 
oscillators.

• Synchronizing clocks to reset their drift involves the 
network, whose delays can vary over time and in 
general, cannot be upper bounded. 

12
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Asynchronous Networks

13

• In real settings, we have to 
model the network as 
asynchronous, meaning:
– a lower bound, “min”
– a “modus operandi”
– BUT no hard upper bound.

• Some algorithms assume a known upper bound 
(a.k.a., synchronous network model), but this is 
not realistic (e.g., buggy router, queuing, attacks).
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Asynchronous Systems 

14

• Not only networks behave asynchronously.
• Computation behaves similarly in real life (there is no 

guaranteed execution time for any operation, it all 
depends on how loaded the machine is for example).

• Asynchronous systems are those where both the 
network and the computation are modeled as 
asynchronous.  Remember this concept because we’ll 
return to it profusely in this class.
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Synchronization Protocols

15

• Best-known algorithm is NTP (network time protocol, 
original paper [Mills-1991]).

• Synchronizes to reference clocks (Greenwich for the 
public Internet).

• Over WAN, synchronization is within tens of ms.  
Great to rely on for human coordination, but 
problematic for machine coordination.

• We’ll build up to the basis for the NTP protocol.
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Notation

16

Master

Clients

t

Ci(t)

• Master clock keeps time t, which is assumed  
to be correct.

• Client clocks Ci that we want to synchronize   
to master keep clocks Ci(t).

• We want two properties:
– Clock consistency (internal): |Ci(t)–Cj(t)|<d1 for 

all i, j
– Clock accuracy (external): |Ci(t)–t|<d2 for all i

• External implies internal.
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Protocol 1: Broadcast-Based Sync

17

• Master broadcasts t to all.
• Client i sets its clock to (t+min) when  it 

gets a message at some time t’.  So, 
Ci(t’) := t+min.

• If we assume a “max” delay, then the 
error between any client and the master 
is bounded by (max-min), which can be 
proven optimal.

Master

t

Ci(t)
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Protocol 2: Interrogation-Based Sync

18

• Client i sends query to master 
and saves the local time, T0.

• Upon receipt of msg, master 
takes the local time, T1, and 
replies with it to client.

• Upon receipt of master reply, 
querier takes its local time, T2, 
and updates its clock. 
Question: TO WHAT VALUE 
to ensure minimal error?

client i

T1

W
ha

t’s
 th

e 
tim

e?
α β
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Protocol 2: Interrogation-Based Sync

19

• Client i sends query to master 
and saves the local time, T0.

• Upon receipt of msg, master 
takes the local time, T1, and 
replies with it to client.

• Upon receipt of master reply, 
querier takes its local time, T2, 
and updates its clock. 
Question: TO WHAT VALUE 
to ensure minimal error?

client i

T1

W
ha

t’s
 th

e 
tim

e?
α β

Cmaster(T2)
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Protocol 2: Interrogation-Based Sync

20

client i

T1

T1

β

Cmaster(T2) Assume min=0.
Extreme Case 1: α=0
• Then, β=(T2-T0).
• Cmaster(T2)=T1+(T2-T0)
• In this case, client i would 

ideally set its time to 
T1+(T2-T0) for zero error.
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Protocol 2: Interrogation-Based Sync

21

client i

T1

T1α

Cmaster(T2) Assume min=0.
Extreme Case 2: β=0:
• Then, α=(T2-T0).
• Cmaster(T2)=T1.
• In this case, client i would 

ideally set its time to T1 
for zero error.

Problem: Client cannot differentiate between Extreme Cases. So, 
best it can do is to set its time to the midway.
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Protocol 2: Interrogation-Based Sync

22

The client set its local time to 
the midpoint between these 
two extremes, which is 
measurable:

Ci(T2) := T1 + (T2–T0)/2

client i

T1

W
ha

t’s
 th

e 
tim

e?
α β
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Protocol 2: Interrogation-Based Sync

23

The client set its local time to 
the midpoint between these 
two extremes, which is 
measurable:

Ci(T2) := T1 + (T2–T0)/2

What’s the max error?client i

T1

W
ha

t’s
 th

e 
tim

e?
α β
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Protocol 2: Interrogation-Based Sync

24

The client set its local time to 
the midpoint between these 
two extremes, which is 
measurable:

Ci(T2) := T1 + (T2–T0)/2
max error = (T2-T0)/2

client i

T1

W
ha

t’s
 th

e 
tim

e?
α β

Max error is achieved in 
Extreme Cases 1 and 2, when 
Ci is either behind or ahead.
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Protocol 2: Interrogation-Based Sync

25

querier i

T1

W
ha

t’s
 th

e 
tim

e?

• Preceding analysis ignores min.
• Also ignores drift of client clock 

during T0 to T2 period.  If you 
include it, the equation gets a bit 
more complicated.

• It also ignores local delays, e.g., 
T2 is taken but Ci is updated later.  
If you include this, then things get 
even more complicated.

• More complications in a real 
protocol like NTP arise from 
ensuring scalability, FT for master.
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Implications

26

• Error diminishes as the measurement trial RTT approaches 2*min.
– is a probabilistic tradeoff
– can require measurements to be close to RTT to “accept” them and 

achieve rapport – increase number of trials necessary, but get tight 
error bounds

– can be sloppy and take any measurement – decreases number of 
trials, but get worse error bounds

• Thus, network delay impacts clock synchronization and 
prevents it from ever being perfect.
– NTP over WAN typically has an error of tens of milliseconds.
– GPS synchronization is much tighter (low min, alpha, beta), but still non zero.
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Outline

• Physical clocks
– Synchronization challenges and protocols

• Logical clocks
– Lamport clock protocol

• Examples
– Global log for debugging
– Mutual exclusion

27
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Logical Clocks

28

• Leslie Lamport, parent of DS, observed that most coordination in 
distributed systems (e.g., for mutual exclusion, barriers, complete 
event log) doesn’t require a global notion of real time!

• Most coordination only needs a global order of discrete events.

• E.g., in the distributed debugging example, you only need order 
between dependent events that could possibly have caused the 
failure.

• Achieving a global order of events is easier to guarantee than 
achieving zero-error real-time synchronization.

• This is why many foundational DS protocols rely on logical clocks.
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Logical Clock Requirements

Lamport posited two requirements for logical clocks:

1. They must preserve program order (i.e., the order of events 
in one process needs to be preserved by the logical clock)

2. They must preserve message order (i.e., a message sent 
event always needs to precede that message’s receipt event 
in the logical clock).

These two requirements capture all internal causality between 
any two events in the system.

29
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Logical Clock Synchronization Protocol
• Lamport clock protocol [Lamport-1978].
• Setup:

– Process = individual node in a distributed system
– Processes communicate by messages (e.g., RPCs)
– Events can be messages or system-specific events (e.g., write to 

file, read from file, whatever makes sense for the specific 
distributed system).

– View each process in the distributed system as a state machine: 
has some initial state, events cause it to move from one state to 
another.

30
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Lamport Clock Protocol
• Each process Pi maintains a local 

counter, Ci

• Each  process Pi increments Ci  between 
any two successive events

• Each process piggybacks timestamp Tm 
on a message it sends out, where Tm is 
value of Ci at the time of sending m

• Upon receiving m at process Pj:
– Pj sets its counter Cj to max(Cj, Tm+1)
– The receipt of m is a separate event that 

then separately advances Cj (i.e., Cj++)31

 

Node P
i
’s state machine:

  On local event:
     -  C

i
++

  On message send:
     -  Piggyback C

i
 to msg.

     -   C
i
++

  On message(T
m

) receive:
     -   C

i 
= max(C

i
, T

m
+1)

     -   C
i
++



Distributed Systems 1, Columbia Course 4113, Instructor: Roxana Geambasu

Getting a Global Order

• The preceding protocol gives a partial order of all causally 
dependent events.

• Often we need a global order on which all processes agree.

• To obtain that, use logical clock to set the order.  Use process 
IDs as the tie breaker.
– E.g.: use (Logical timestamp).(process ID) as your 

timestamp.

32
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Distributed Debugging Example 

33Breakout Activity!

Global Log

TODO: Timestamp 
the ops in each 
machine’s log 
using logical 
clocks, then 

assemble the 
global log by 
merge-sorting 

them.
(assume Ci=0 
initially)

0.1 op11 rcv cli
1.1 op12 …
?? op13 snd M2
?? op14 …
?? op15 rcv M2
?? op16 …
?? op17 snd cli
…

M1 (front end) M3 (DB)
?? op21 rcv M1
?? op22 …
?? op23 ...
?? op24 snd M3
?? op25 …
?? op26 …
?? op27 …
?? op28 …
?? op26 rcv M3
?? op27 …
?? op28 snd M1
…

0.3 op31 …
?? op32 …
?? op33 …
?? op34 rcv M2
?? op35 SQL
?? op36 …
?? op37 snd M2
…

C1

0
1
2
?
?
?
?
?

C2

0
?
?
?
?
?
?
?
?
?
?
?

C3

0
?
?
?
?
?
?
?

M2 (app server)
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Activity (10 minutes)

34

● Assign logical timestamps to operations in each log, 
then sort the operations by timestamp in global log. A 
few entries have already been filled in as examples.

● Hint: As you go through the operations, keep track of 
the logical clock value at each machine, C1-3.  Use 
the Lamport clock protocol to update the clocks (the 
algorithm is pasted on the right).

● Hint: It may be useful to first draw happens-before 
arrows between message sends and their receipts so 
you know when clock synchronization happens.

● Hint: Use a totally ordered clock: timestamp is Ci.i.

 

Node P
i
’s state machine:

  On local event:
     -  C

i
++

  On message send:
     -  Piggyback C

i
 to msg.

     -   C
i
++

  On message receive:
     -   C

i 
= max(C

i
, T

m
+1)

     -   C
i
++
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Student Worksheet

35

0.1 op11 rcv cli

… enter all events in 
order of their logical 
timestamp

Global Log

0.1 op11 rcv cli
1.1 op12 …
?? op13 snd M2
?? op14 …
?? op15 rcv M2
?? op16 …
?? op17 snd cli
…

M1 (front end) M3 (DB)
3.2 op21 rcv M1
?? op22 …
?? op23 ...
?? op24 snd M3
?? op25 …
?? op26 …
?? op27 …
?? op28 …
?? op26 rcv M3
?? op27 …
?? op28 snd M1
…

0.3 op31 …
?? op32 …
?? op33 …
?? op34 rcv M2
?? op35 SQL
?? op36 …
?? op37 snd M2
…

C1

0
1
2
?
?
?
?
?

C2

0
?
?
?
?
?
?
?
?
?
?
?

C3

0
?
?
?
?
?
?
?

M2 (app server)
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Solution

36

0.1 op11 rcv cli
0.3 op31 …
1.1 op12 …
1.3 op32 …
2.1 op13 snd M2
2.3 op33 …
3.1 op14 …
3.2 op21 rcv M1
4.2 op22 …
5.2 op23 …
6.2 op24 snd M3
7.2 op25 …
7.3 op34 rcv M2
8.2 op26 …
8.3 op35 SQL
9.2 op27 …
9.3 op36 …
10.2 op28 …
10.3 op37 snd M2
11.2 op26 rcv M3
12.2 op27 …
13.2 op28 snd M1
14.1 op15 rcv M2
15.1 op16 …
16.1 op17 snd cli
…

Global Log

0.1 op11 rcv cli
1.1 op12 …
2.1 op13 snd M2
3.1 op14 …
14.1 op15 rcv M2
15.1 op16 …
16.1 op17 snd cli
…

M1 (front end) M3 (DB)
3.2 op21 rcv M1
4.2 op22 …
5.2 op23 ...
6.2 op24 snd M3
7.2 op25 …
8.2 op26 …
9.2 op27 …
10.2 op28 …
11.2 op26 rcv M3
12.2 op27 …
13.2 op28 snd M1
…

0.3 op31 …
1.3 op32 …
2.3 op33 …
7.3 op34 rcv M2
8.3 op35 SQL
9.3 op36 …
10.3 op37 snd M2
…

C1

0
1
2
3
4

15
16
17

C2

0
4
5
6
7
8
9

10
11
12
13
14

C3

0
1
2
3
8
9

10
11

M2 (app server)

2

6

10
13
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Another Example: Mutual Exclusion

• https://columbia.github.io/ds1-class/lectures/04-clocks-mut
ex-example-ppt.pdf 

• slides 2 and 13-23 

37

https://columbia.github.io/ds1-class/lectures/04-clocks-mutex-example-ppt.pdf
https://columbia.github.io/ds1-class/lectures/04-clocks-mutex-example-ppt.pdf
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Pluses and Minuses of Lamport Clocks

+ Respect causality, which can address many coordination 
problems in distributed systems.
- Capturing causality is sometimes insufficient, as there can be 
events outside the system that have causal influence on the 
evolution of the system.  The ordering doesn’t capture these 
relationships.
- Lamport clock ordering doesn’t actually imply causality/influence, 
just potential influence.  Hence, the order can be too much order, 
affecting performance/scalability.

38
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Next Classes

• Diverge a bit from Lamport clocks, but we’ll return.

• Essentially, Lamport clocks are used in many coordination 
protocols, including protocols that solve consensus, a     
key coordination problem in DS with many instantiations.

• We next formulate the consensus and related problems 
and we’ll return to Lamport clocks when we discuss the 
solution.  

39
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Key Papers

• [Mills-1991] David Mills. Internet Time Synchronization: the 
Network Time Protocol. In IEEE Transactions on 
Communications, 1991.

• [Lamport-1978] Leslie Lamport. Time, Clocks, and the 
Ordering of Events in a Distributed System.  In 
Communications of the ACM, 1978.

40


